971 resultados para Matsubara Formalism
Resumo:
Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.
Resumo:
We consider the minimal chiral Schwinger model, by embedding the gauge non-invariant formulation into a gauge theory following the Batalin-Fradkin-Fradkina-Tyutin point of view. Within the BFFT procedure, the second-class constraints are converted into strongly involutive first-class ones, leading to an extended gauge-invariant formulation. We also show that, like the standard chiral model, in the minimal chiral model the Wess-Zumino action can be obtained by performing a q-number gauge transformation into the effective gauge non-invariant action.
Resumo:
We calculate the Green functions of the two versions of the generalized Schwinger model, the anomalous and the nonanomalous one, in their higher order Lagrangian density form. Furthermore, it is shown through a sequence of transformations that the bosonized Lagrangian density is equivalent to the former, at least for the bosonic correlation functions. The introduction of the sources from the beginning, leading to a gauge-invariant source term, is also considered. It is verified that the two models have the same correlation functions only if the gauge-invariant sector is taken into account. Finally, there is presented a generalization of the Wess-Zumino term, and its physical consequences are studied, in particular the appearance of gauge-dependent massive excitations.
Resumo:
In this paper, we evaluate the correlation functions of the spin-1/2 XYZ model for some particular cases by using the Mori continued-fraction formalism. The results are exactly the same as those well-known ones. This removes any doubt about the convergence of the continued fraction recently raised by some authors.
Resumo:
We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.
Resumo:
We derive the Wess-Zumino scalar term of the generalized Schwinger model both in the singular and nonsingular cases by using BRST-BFV framework. The photon propagators are also computed in the extended Lorentz gauge.
Resumo:
Some postulates are introduced to go from the classical Hamilton-Jacobi theory to the quantum one. We develop two approaches in order to calculate propagators, establishing the connection between them and showing the equivalence of this picture with more known ones such as the Schrödinger's and the Feynman's formalisms. Applications of the above-mentioned approaches to both the standard case of the harmonic oscillator and to the harmonic oscillator with time-dependent parameters are made. © 1991 Plenum Publishing Corporation.
Resumo:
The problem of a harmonic oscillator coupling to an electromagnetic potential plus a topological-like (Chern-Simons) massive term, in two-dimensional space, is studied in the light of the symplectic formalism proposed by Faddeev and Jackiw for constrained systems.
Resumo:
A manifestly super-Poincaré covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables.
Resumo:
Classical BRST invariance in the pure spinor formalism for the open superstring is shown to imply the supersymmetric Born-Infeld equations of motion for the background fields. These equations are obtained by requiring that the left and right-moving BRST currents are equal on the worldsheet boundary in the presence of the background. The Born-Infeld equations are expressed in N = 1 D = 10 superspace and include all abelian contributions to the low-energy equations of motion, as well as the leading non-abelian contributions. © SISSA/ISAS 2003.
Resumo:
A ten-dimensional super-Poincaré covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and and to construct a suitable b ghost. A super-Poincaré covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N < 4, confirming the perturbative finiteness of superstring theory. One can also prove the Type IIB S-duality conjecture that R4 terms in the effective action receive no perturbative contributions above one loop. © SISSA/ISAS 2004.
Resumo:
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted ĉ ≤ 3 N ≤ 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincaré covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action. © SISSA 2005.
Resumo:
The massless 4-point one-loop amplitude computation in the pure spinor formalism is shown to agree with the computation in the RNS formalism. © SISSA 2006.
Resumo:
Among other things, the pure spinor formalism has been used to rederive some particular superstring scattering amplitudes in the last few years. I will briefly review how the computations were done and show that the kinematical factors of these amplitudes can be simply written as integrals in a pure spinor superspace. © 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work we discuss the Hamilton-Jacobi formalism for fields on the null-plane. The Real Scalar Field in (1+1) - dimensions is studied since in it lays crucial points that are presented in more structured fields as the Electromagnetic case. The Hamilton-Jacobi formalism leads to the equations of motion for these systems after computing their respective Generalized Brackets. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.