985 resultados para Matrix-Variate Statistical Distributions
Resumo:
Esta tesis se centra en el estudio de medios granulares blandos y atascados mediante la aplicación de la física estadística. Esta aproximación se sitúa entre los tradicionales enfoques macro y micromecánicos: trata de establecer cuáles son las propiedades macroscópicas esperables de un sistema granular en base a un análisis de las propiedades de las partículas y las interacciones que se producen entre ellas y a una consideración de las restricciones macroscópicas del sistema. Para ello se utiliza la teoría estadística junto con algunos principios, conceptos y definiciones de la teoría de los medios continuos (campo de tensiones y deformaciones, energía potencial elástica, etc) y algunas técnicas de homogeneización. La interacción entre las partículas es analizada mediante las aportaciones de la teoría del contacto y de las fuerzas capilares (producidas por eventuales meniscos de líquido cuando el medio está húmedo). La idea básica de la mecánica estadística es que entre todas soluciones de un problema físico (como puede ser el ensamblaje en equilibrio estático de partículas de un medio granular) existe un conjunto que es compatible con el conocimiento macroscópico que tenemos del sistema (por ejemplo, su volumen, la tensión a la que está sometido, la energía potencial elástica que almacena, etc.). Este conjunto todavía contiene un número enorme de soluciones. Pues bien, si no hay ninguna información adicional es razonable pensar que no existe ningún motivo para que alguna de estas soluciones sea más probable que las demás. Entonces parece natural asignarles a todas ellas el mismo peso estadístico y construir una función matemática compatible. Actuando de este modo se obtiene cuál es la función de distribución más probable de algunas cantidades asociadas a las soluciones, para lo cual es muy importante asegurarse de que todas ellas son igualmente accesibles por el procedimiento de ensamblaje o protocolo. Este enfoque se desarrolló en sus orígenes para el estudio de los gases ideales pero se puede extender para sistemas no térmicos como los analizados en esta tesis. En este sentido el primer intento se produjo hace poco más de veinte años y es la colectividad de volumen. Desde entonces esta ha sido empleada y mejorada por muchos investigadores en todo el mundo, mientras que han surgido otras, como la de la energía o la del fuerza-momento (tensión multiplicada por volumen). Cada colectividad describe, en definitiva, conjuntos de soluciones caracterizados por diferentes restricciones macroscópicas, pero de todos ellos resultan distribuciones estadísticas de tipo Maxwell-Boltzmann y controladas por dichas restricciones. En base a estos trabajos previos, en esta tesis se ha adaptado el enfoque clásico de la física estadística para el caso de medios granulares blandos. Se ha propuesto un marco general para estudiar estas colectividades que se basa en la comparación de todas las posibles soluciones en un espacio matemático definido por las componentes del fuerza-momento y en unas funciones de densidad de estados. Este desarrollo teórico se complementa con resultados obtenidos mediante simulación de la compresión cíclica de sistemas granulares bidimensionales. Se utilizó para ello un método de dinámica molecular, MD (o DEM). Las simulaciones consideran una interacción mecánica elástica, lineal y amortiguada a la que se ha añadido, en algunos casos, la fuerza cohesiva producida por meniscos de agua. Se realizaron cálculos en serie y en paralelo. Los resultados no solo prueban que las funciones de distribución de las componentes de fuerza-momento del sistema sometido a un protocolo específico parecen ser universales, sino que también revelan que existen muchos aspectos computacionales que pueden determinar cuáles son las soluciones accesibles. This thesis focuses on the application of statistical mechanics for the study of static and jammed packings of soft granular media. Such approach lies between micro and macromechanics: it tries to establish what the expected macroscopic properties of a granular system are, by starting from a micromechanical analysis of the features of the particles, and the interactions between them, and by considering the macroscopic constraints of the system. To do that, statistics together with some principles, concepts and definitions of continuum mechanics (e.g. stress and strain fields, elastic potential energy, etc.) as well as some homogenization techniques are used. The interaction between the particles of a granular system is examined too and theories on contact and capillary forces (when the media are wet) are revisited. The basic idea of statistical mechanics is that among the solutions of a physical problem (e.g. the static arrangement of particles in mechanical equilibrium) there is a class that is compatible with our macroscopic knowledge of the system (volume, stress, elastic potential energy,...). This class still contains an enormous number of solutions. In the absence of further information there is not any a priori reason for favoring one of these more than any other. Hence we shall naturally construct the equilibrium function by assigning equal statistical weights to all the functions compatible with our requirements. This procedure leads to the most probable statistical distribution of some quantities, but it is necessary to guarantee that all the solutions are likely accessed. This approach was originally set up for the study of ideal gases, but it can be extended to non-thermal systems too. In this connection, the first attempt for granular systems was the volume ensemble, developed about 20 years ago. Since then, this model has been followed and improved upon by many researchers around the world, while other two approaches have also been set up: energy and force-moment (i.e. stress multiplied by volume) ensembles. Each ensemble is described by different macroscopic constraints but all of them result on a Maxwell-Boltzmann statistical distribution, which is precisely controlled by the respective constraints. According to this previous work, in this thesis the classical statistical mechanics approach is introduced and adapted to the case of soft granular media. A general framework, which includes these three ensembles and uses a force-moment phase space and a density of states function, is proposed. This theoretical development is complemented by molecular dynamics (or DEM) simulations of the cyclic compression of 2D granular systems. Simulations were carried out by considering spring-dashpot mechanical interactions and attractive capillary forces in some cases. They were run on single and parallel processors. Results not only prove that the statistical distributions of the force-moment components obtained with a specific protocol seem to be universal, but also that there are many computational issues that can determine what the attained packings or solutions are.
Resumo:
Neurological Diseases (ND) are affecting larger segments of aging population every year. Treatment is dependent on expensive accurate and frequent monitoring. It is well known that ND leave correlates in speech and phonation. The present work shows a method to detect alterations in vocal fold tension during phonation. These may appear either as hypertension or as cyclical tremor. Estimations of tremor may be produced by auto-regressive modeling of the vocal fold tension series in sustained phonation. The correlates obtained are a set of cyclicality coefficients, the frequency and the root mean square amplitude of the tremor. Statistical distributions of these correlates obtained from a set of male and female subjects are presented. Results from five study cases of female voice are also given.
Resumo:
Let Q be a stable and conservative Q-matrix over a countable state space S consisting of an irreducible class C and a single absorbing state 0 that is accessible from C. Suppose that Q admits a finite mu-subinvariant measure in on C. We derive necessary and sufficient conditions for there to exist a Q-process for which m is mu-invariant on C, as well as a necessary condition for the uniqueness of such a process.
Resumo:
A set of techniques referred to as circular statistics has been developed for the analysis of directional and orientational data. The unit of measure for such data is angular (usually in either degrees or radians), and the statistical distributions underlying the techniques are characterised by their cyclic nature-for example, angles of 359.9 degrees are considered close to angles of 0 degrees. In this paper, we assert that such approaches can be easily adapted to analyse time-of-day and time-of-week data, and in particular daily cycles in the numbers of incidents reported to the police. We begin the paper by describing circular statistics. We then discuss how these may be modified, and demonstrate the approach with some examples for reported incidents in the Cardiff area of Wales. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Having a fixed differential-group delay (DGD) term b′ in the coarse-step method results in a repetitive pattern in the autocorrelation function (ACF). We solve this problem by inserting a varying DGD term at each integration step. Furthermore we compute the range of values needed for b′ and simulate the phenomenon of polarisation mode dispersion for different statistical distributions of b′. We examine systematically the modified coarse-step method compared to the analytical model, through our simulation results. © 2006 Elsevier B.V. All rights reserved.
Resumo:
This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as "histogram binning" inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation.
Resumo:
The main objective of the project was to develop a geochemical method for exploration of ores associated with granitic rocks. Fe and Mn oxidates were sampled in streambeds and lakes from 129 localities in Southeastern Norway. 65 of these localities are situated in the northern Oslo Graben. The samples were examined mineralogically and chemically by a variety of methods. Geochemical maps of the element content in oxidates show regional distribution patterns for several elements. Sampling and analysis of oxidates can be used in exploration for mineralizations such as the Skrukkelia Mo-deposit in the northern Oslo Graben. New anomalies (especially for Zn and W) have been detected. Appendix I contains a description of samples, chemical and mineralogical determinations performed on the samples, backscattered electron image-, X-ray image- and scanning electron image pictures of the oxidate preparates. Appendix II contains spectral plots, point analysis with the microprobe, X-ray diffractograms, analytical results, correlation coefficient matrix, scatterplots, frequency distributions and information on data storage. Appendix III containS maps of the element content in oxidates.
Resumo:
Under defined laboratory and field conditions, the investigation of percolating water through soil columns (podsol, lessive and peat) down to groundwater table shows that the main factors which control the chemical characteristics of the percolates are: precipitation, evaporation, infiltration rate, soil type, depth and dissolved organic substances. Evaporation and percolation velocity influences the Na+, SO4**2- and Cl- concentrations. Low percolation velocity leads also to longer percolation times and water logging in less permeable strata, which results in lower Eh-values and higher CO2-concentrations due to low gas exchange with the atmosphere. Ca2+ and Mg2+ carbonate concentration depends on soil type and depth. Metamorphism and decomposition of organic substances involve NO3 reduction and K+, Mg2+, SO4**2-, CO2, Fe2+,3+ transport. The analytical data were evaluated with multi variate statistical methods.
Resumo:
The belemnite species Hibolites jaculoides Swinnerton, 1937 is redefined on the basis of a bed by bed collection of 2100 rostrums from the Upper Hauterivian (Cretaceous deposits of NW Germany and Yorkshire, England. According to the variate-statistical evaluation of the data gathered, definite phylotic changes are disdernible within the species. All characters measured indicate a definite tendency towards reduction in size. Large-sized, club-shaped specimens are typical for the stratigraphically older beds, delicate and slender-built forms dominate in the upper Upper Hauterivian. Comparison of the material from England and Germany yielded that three of the varieties described by Swinnerton are limited mainly to the lower Upper Hauterivian of England.
Resumo:
Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
The thesis has extensively investigated for the first time the statistical distributions of atmospheric surface variables and heat fluxes for the Mediterranean Sea. After retrieving a 30-year atmospheric analysis dataset, we have captured the spatial patterns of the probability distribution of the relevant atmospheric variables for ocean atmospheric forcing: wind components (U,V), wind amplitude, air temperature (T2M), dewpoint temperature (D2M) and mean sea-level pressure (MSL-P). The study reveals that a two-parameter PDF is not a good fit for T2M, D2M, MSL-P and wind components (U,V) and a three parameter skew-normal PDF is better suited. Such distribution captures properly the data asymmetric tails (skewness). After removing the large seasonal cycle, we show the quality of the fit and the geographic structure of the PDF parameters. It is found that the PDF parameters vary between different regions, in particular the shape (connected to the asymmetric tails) and the scale (connected to the spread of the distribution) parameters cluster around two or more values, probably connected to the different dynamics that produces the surface atmospheric fields in the Mediterranean basin. Moreover, using the atmospheric variables, we have computed the air-sea heat fluxes for a 20-years period and estimated the net heat budget over the Mediterranean Sea. Interestingly, the higher resolution analysis dataset provides a negative heat budget of –3 W/m2 which is within the acceptable range for the Mediterranean Sea heat budget closure. The lower resolution atmospheric reanalysis dataset(ERA5) does not satisfy the heat budget closure problem pointing out that a minimal resolution of the atmospheric forcing is crucial for the Mediterranean Sea dynamics. The PDF framework developed in this thesis will be the basis for a future ensemble forecasting system that will use the statistical distributions to create perturbations of the atmospheric ocean forcing.
Resumo:
The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition