996 resultados para Mating Behavior
Resumo:
A species' mating system depends on its spatial distribution and temporal availability of mating opportunities, as well as on the resources that create these opportunities. In addition, for many species, courtship is driven by specific behaviors that precede and follow copulation. Although Sphex ingens is a taxonomically well known species of digger wasp, its ecology and behavior remain poorly known. Hence, we analyzed patterns and trends of sexual behavior, in order to understand whether courtship can persist in a polygamous mating system. We monitored by video wasp populations in Ilha Grande, southeastern Brazil. Based on the observed behaviors, we calculated stochastic probabilities with a Markov chain to infer on behavioral trends. We recorded four behavioral phases based on 19,196 behavioral acts observed in 224 copulation attempts. There were no significant differences in common behavioral acts between males and females. The copulation patterns, conflicts, and trends observed in S. ingens clearly show the influence of sexual selection in its promiscuous mating system.
Resumo:
Lateral gene transfer (LGT) is one of the most important processes leading to prokaryotic genome innovation. LGT is typically associated with conjugative plasmids and bacteriophages, but recently, a new class of mobile DNA known as integrating and conjugative elements (ICE) was discovered, which is abundant and widespread among bacterial genomes. By studying at the single-cell level the behavior of a prevalent ICE type in the genus Pseudomonas, we uncover the remarkable way in which the ICE orchestrates host cell differentiation to ensure horizontal transmission. We find that the ICE induces a state of transfer competence (tc) in 3%-5% of cells in a population under nongrowing conditions. ICE factors control the development of tc cells into specific assemblies that we name "mating bodies." Interestingly, cells in mating bodies undergo fewer and slower division than non-tc cells and eventually lyse. Mutations in ICE genes disrupting mating-body formation lead to 5-fold decreased ICE transfer rates. Hence, by confining the tc state to a small proportion of the population, ICE horizontal transmission is achieved with little cost in terms of vertical transmission. Given the low transfer frequencies of most ICE, we anticipate regulation by subpopulation differentiation to be widespread.
Resumo:
The aim of the present study was to establish and compare the durations of the seminiferous epithelium cycles of the common shrew Sorex araneus, which is characterized by a high metabolic rate and multiple paternity, and the greater white-toothed shrew Crocidura russula, which is characterized by a low metabolic rate and a monogamous mating system. Twelve S. araneus males and fifteen C. russula males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determinations, we applied the classical method of estimation and linear regression as a new method. With regard to variance, and even with a relatively small sample size, the new method seems to be more precise. In addition, the regression method allows the inference of information for every animal tested, enabling comparisons of different factors with cycle lengths. Our results show that not only increased testis size leads to increased sperm production, but it also reduces the duration of spermatogenesis. The calculated cycle lengths were 8.35 days for S. araneus and 12.12 days for C. russula. The data obtained in the present study provide the basis for future investigations into the effects of metabolic rate and mating systems on the speed of spermatogenesis.
Resumo:
Mating is crucial for females that reproduce exclusively sexually and should influence their investment into reproduction. Although reproductive adjustments in response to mate quality have been tested in a wide range of species, the effect of exposure to males and mating per se has seldom been studied. Compensatory mechanisms against the absence of mating may evolve more frequently in viviparous females, which pay higher direct costs of reproduction, due to gestation, than oviparous females. To test the existence of such mechanisms in a viviparous species, we experimentally manipulated the mating opportunity of viviparous female lizard, Lacerta (Zootoca) vivipara. We assessed the effect of mating on ovulation, postpartum body condition and parturition date, as well as on changes in locomotor performances and body temperatures during the breeding cycle. Female lizards ovulated spontaneously and mating had no influence on litter size, locomotor impairment or on selected body temperature. However, offspring production induced a more pronounced locomotor impairment and physical burden than the production of undeveloped eggs. Postpartum body condition and parturition dates were not different among females. This result suggests that gestation length is not determined by an embryonic signal. In the common lizard, viviparity is not associated with facultative ovulation and a control of litter size after ovulation, in response to the absence of mating.
Resumo:
Phyllophaga cuyabana is a univoltine species and its development occurs completely underground. Its control by conventional methods, such as chemical and biological insecticides, is difficult, so it is important to understand its dispersion, reproduction, and population behavior in order to determine best pest management strategies. The objective of this work was to study the behavior of adults of P. cuyabana. This study was carried out in the laboratory, greenhouse and field sites in Paraná State, Brazil (24º25' S and 52º48' W), during four seasons. The results obtained demonstrate that: a) P. cuyabana adults have a synchronized short-flight period when mating and reproduction occurs; b) adults tend to aggregate in specific sites for mating; c) the majority of adults left the soil on alternate nights; d) the choice of mating and oviposition sites was made by females before copulation, since after copulation adults did not fly from or bury themselves at nearby locations; e) females that fed on leaves after mating, oviposited more eggs than females that had not fed;f) plant species such as sunflower (Helianthus annuus) and the Crotalaria juncea are important food sources for adults.
Resumo:
Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.
Resumo:
The fact that individuals learn can change the relationship between genotype and phenotype in the population, and thus affect the evolutionary response to selection. Here we ask how male ability to learn from female response affects the evolution of a novel male behavioral courtship trait under pre-existing female preference (sensory drive). We assume a courtship trait which has both a genetic and a learned component, and a two-level female response to males. With individual-based simulations we show that, under this scenario, learning generally increases the strength of selection on the genetic component of the courtship trait, at least when the population genetic mean is still low. As a consequence, learning not only accelerates the evolution of the courtship trait, but also enables it when the trait is costly, which in the absence of learning results in an adaptive valley. Furthermore, learning can enable the evolution of the novel trait in the face of gene flow mediated by immigration of males that show superior attractiveness to females based on another, non-heritable trait. However, rather than increasing monotonically with the speed of learning, the effect of learning on evolution is maximized at intermediate learning rates. This model shows that, at least under some scenarios, the ability to learn can drive the evolution of mating behaviors through a process equivalent to Waddington's genetic assimilation.
Resumo:
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.
Resumo:
The influence of male body weight on the aggressive and mating behaviour of male Gryllus integer was studied under laboratory conditions. The relationship between adult age and weight was first determined; female weight increased and male weight decreased with age. Virgin males that had been isolated since the adult molt were paired for similar age and a difference in weight of greater than 200 mg. Paired males and a virgin female were observed in a glass arena for 24 minutes or until a mating occurred. Larger males mated significantly more often than smaller males. Larger males attacked more often, were more successful in aggressive encounters and had more contact with the female. Males that did not mate had lower rates of courtship and mounts than males that mated. Females in trials that did not result in a mating were signifcantly heavier than females in trials that resulted in a mating. Larger males that mated were significantly closer in weight to the weight of the female than larger males in trials that did not result in a mating. Larger males in trials that did not result in a mating had higher rates of aggressive stridulation than larger males that mated. Male weight is therefore important in mating success; fitness traits should theoretically show low genetic variability. However, significant heritability values were found for live weight, dry weight, head width, pronotum width and length, hind femur length and forewing length when estimated from the regression of offspring on mid-parent values, offspring and female and male values separately and full-sib correlations. The heritability of hind femur width was significant when estimated from the regression of offspring on male parent and from full-sib correlations. Heritability estimates of forewing length were significantly higher when estimated from the regression of offspring on female parent than when estimated from the regression of offspring on male parent. High phenotypic, genetic and environmental correlations were found between all pairs of traits. Data on male mating success and the heritability of fitness traits were discussed in terms of the maintenance of genetic variability.
Resumo:
The reproductive behaviour of the field cricket, Gryllus integer, was systematically observed in indoor arenas to determine the extent of female Choice and male-male competition at different sex ratios representing two male densities (12:6 and 6:6). The costs and benefits to males and females in those two densities were analyzed according to the theory of the evolution o£ leks. Observations were conducted during the dark hours when most calling occurred since hourly rates of courtship song and mating did not fluctuate significantly over a 24 h period. Female mating rates were not significantly different between densities, therefore males at high densities were not advantaged because of increased female tendencies to mate when social stimulation was increased. Mean rates of acoustical signalling (calling and courtin"g) did not differ significantly between densities. Mean rates of fighting by males at the high density were significantly greater than those of males at the low density. Mating benefits associated with callin~courting and fighting were measured. Mating rates did not vary with rates of calling at either density. Calling was not a prerequisite to mating. Courtship song preceded all matings. There was a significant power fit between male mating and courting rates, and male mating and fighting rates at the low, but not at the high, density. Density differences in the benefits associated with increased courting and fighting may relate, in part, to greater economic defensibility and monopoly of females due to reduced male competition at the low density. Dominant males may be preferentially chosen by females or better able to monopolize mating opportunities than subordinate males. Three criteria were used to determine whether dominant males were preferentially chosen by females. The number of matings by males who won fights (within 30 min of mating) was significantly greater than the number of matings by males who were defeated in such fights. Mating rates did not vary significantly with rates of winning at either density. There was a significant power fit between male mating rates and the percentage of fights a male won (irrespective of his fighting-frequency) at the low density. The mean duration a male guarded the female after mating did not vary significantly between densities. There was a significant linear relationship between the duration a spermatophore was retained and the duration a male guarded the female after mating. Courtship song apparently stimulated spermatophore removal. Male guarding involved inter-male aggression and reduced courtship attempts by other males. Males at the high density received no apparent reproductive benefits associated with increased social stimulation. Conclusive evidence for preferential choice of males by females, using the criteria examined here, is lacking. Males at the lower density had fewer competitors and could monopolize females more effectively.
Resumo:
The objective of this investigation was to clarify the adaptive significance of female sexual behaviours in the house cricket, Acheta domesticus, and the Texas field cricket, Gryllus integer. Experiments were focussed primarily on: nutritional factors affecting female reproductive success; the ontogeny of female sexual behaviours; female mating frequency and progeny production; and the pattern of sperm competition. Reproduction of singly mated female A. domesticus assigned to 3 nutritional regimes was compared . Females fed a vitamin and protein-enriched mouse chow, cannibalistic females, and starved females produced on the average, 513 , 200 and 68 offspring, respectively. Cannibals probably could not obtain the same amounts of essential nutrients as females fed mouse chow. Reabsorption of oocytes was likely the major factor contributing to the decreased reproduction of starved females. In addition, female !. domesticus fed mouse chow, but allowed constant access to males produced 11 times as many offspring than did females fed corn meal. Females fed corn meal probably could not absorb or synthesize enough dietary lipids, thus resulting in poor ovariole growth. Female !. domesticus first mate at an average adult age of 7 days, closely corresponding to when they first exhibit positive phonotaxis. Females mate repeatedly and often consume the externally attached spermatophore. In ~. domesticus, females allowed constant access to males produced significantly more offspring than did single maters. Similarly, doubly mated G. integer females produced more offspring than did single maters. This difference resulted largely from the failure of many single maters to reproduce. Remating by female crickets partly functions in offsetting the possibility of a failed initial mating. Nymph production increased significantly with the time the spermatophore was attached in singly mated ~. domesticus. Spermatophore consumption by the female was not affected by male guarding behaviour, and the interval between mating and eating of the spermatophore may often be shorter than the time required for maximum insemination. Some degree of sperm depletion in singly mated !. domesticus and G. integer may have occurred. The patterns of daily offspring production of singly and multiplymated females suggests that a factor provided by a male during mating stimulates female oviposition and/or egg production. Female crickets also might acquire nutrition from spermatophore consumption, a benefit that is augmented by female multiple mating. The electrophoretic examination of various allozymes in ~. integer did not permit determination of a pattern of sperm competition. However, the possibility of last male sperm predominance is related to male guarding behaviour.
Resumo:
In the past ten years, many researchers have focussed their attention on parasites regarding the role they may play in causing variations in male secondary sexual traits and subsequent effects on female choice. Male age has also been suggested to be an important factor in female choice if old age reflects superior genes. This study investigated the effects that gregarine gut parasites, age, and diet have on the calling and mating behaviour of the male Texas field cricket, Gryllus integer. Male calling songs were recorded in the laboratory using a Digital Signal Processing Network. The song parameters measured were: pulse rate, pulse width, burst duration, pulses per burst, interburst interval, and percent missing pulses. The effects of parasite load and age on the various calling song parameters was investigated in crickets that were fed two different diets varying in nutritional quality. None of the calling song parameters were affected by either parasite load or age in either diet grou p. Courtship behaviour was ob served and recorded using an Eventlog recorder on an IBM computer in the laboratory. Females mated equally with paras(tized and unparasitized males and with old and young males The total duration and proportion of time spent performing each of 9 courtship displays were recorded for males on each diet. Only one display was affected by parasite load. Highly parasitized males fed the nutritionally inferior diet juddered for a proportionately shorter time than males with low parasite loads. Also, older males performed juddering and shaking antennae proportionally longer and juddering and raising wings for longer durations than younger males. Males that successfully mated were observed for performance of 8 post-copulatory guarding behaviour displays. None of the guarding behaviours were affected by parasite load. However, one display was affected by age, with older males performing guard turning for shorter durations than younger males. Results are discuss,ed in terms of the influence of parasites and age on female choice.
Resumo:
The courtship behavior of the navel orangeworm, Amyelois transitella, was examined in a wind tunnel. Sixty nine courtship sequences were analyzed and successful sequences divided into two categories: rapid courtship sequences, which involved few breaks in contact, short or no periods of male/female chasing and lasted <10 s between initial contact and mating; and prolonged courtship sequences, which involved many breaks in contact, extended periods of male/female chasing and lasted >10 s. Fifty six (81%) courtships were successful (50.7% rapid courtship and 30.4% prolonged courtship); the remaining 13 (18.8%) sequences were failed courtships. Of failed courtships, 9 (13.0%) were due to males losing contact with females during courtship chases and 4 (5.8%) due to females flying away immediately after male contact. Of all courtship sequences involving a break in contact during a chase, 38.5% resulted in an unsuccessful mating attempt. These findings contrast with previous studies of the courtship behavior of the navel orangeworm, potentially indicating that the type of bioassay used to study courtship may have a large effect on the behavioral sequences displayed. We evaluate several diagnostic techniques for the analysis of sequences of behavioral transitions.
Resumo:
Life history parameters and reproductive behaviors of the harlequin bug, Murgantia histrionica Hahn (Heteroptera: Pentatomidae), were determined. Total developmental time from egg to adult was ≈48 d. After a sexual maturation period of ≈7 d, both sexes mated repeatedly, with females laying multiple egg masses of 12 eggs at intervals of 3 d. Adult females lived an average of 41 d, whereas adult males lived an average of 25 d. Courtship and copulation activities peaked in the middle of the photophase. In mating experiments in which mixed sex pairs of virgin and previously mated bugs were combined in all possible combinations, the durations of courtship and copulation by virgin males were significantly longer with both virgin and previously mated females than the same behaviors for previously mated males. When given a choice between a virgin or previously mated female, previously mated males preferred to mate with virgin females, whereas virgin males showed no preference for virgin over previously mated females. Analyses of mating behaviors with ethograms and behavioral transition matrices suggested that a primary reason for failure to copulate by virgin males was the incorrect rotation of their pygophores to the copulation position, so that successful alignment of the genitalia could not occur.
Resumo:
Female aggregation and male territoriality are considered to be hallmarks of polygynous mating systems. The development of genetic parentage assignment has called into question the accuracy of behavioral traits in predicting true mating systems. In this study we use 14 microsatellite markers to explore the mating system of one of the most behaviorally polygynous species, the California sea lion (Zalophus californianus). We sampled a total of 158 female-pup pairs and 99 territorial males across two breeding rookeries (San Jorge and Los Islotes) in the Gulf of California, Mexico. Fathers could be identified for 30% of pups sampled at San Jorge across three breeding seasons and 15% of sampled pups at Los Islotes across two breeding seasons. Analysis of paternal relatedness between the pups for which no fathers were identified (sampled over four breeding seasons at San Jorge and two at Los Islotes) revealed that few pups were likely to share a father. Thirty-one percent of the sampled males on San Jorge and 15% of the sampled males on Los Islotes were assigned at least one paternity. With one exception, no male was identified as the father of more than two pups. Furthermore, at Los Islotes rookery there were significantly fewer pups assigned paternity than expected given the pool of sampled males (p<0.0001). Overall, we found considerably lower variation in male reproductive success than expected in a species that exhibits behavior associated with strongly polygynous mating. Low variation in male reproductive success may result from heightened mobility among receptive females in the Gulf of California, which reduces the ability of males to monopolize groups of females. Our results raise important questions regarding the adaptive role of territoriality and the potential for alternative mating tactics in this species.