875 resultados para Mathematical proficiency
Resumo:
This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.
Resumo:
The Graphics-Decoding Proficiency (G-DP) instrument was developed as a screening test for the purpose of measuring students’ (aged 8-11 years) capacity to solve graphics-based mathematics tasks. These tasks include number lines, column graphs, maps and pie charts. The instrument was developed within a theoretical framework which highlights the various types of information graphics commonly presented to students in large-scale national and international assessments. The instrument provides researchers, classroom teachers and test designers with an assessment tool which measures students’ graphics decoding proficiency across and within five broad categories of information graphics. The instrument has implications for a number of stakeholders in an era where graphics have become an increasingly important way of representing information.
Resumo:
This paper focuses on the turning point experiences that worked to transform the researcher during a preliminary consultation process to seek permission to conduct of a small pilot project on one Torres Strait Island. The project aimed to learn from parents how they support their children in their mathematics learning. Drawing on a community research design, a consultative meeting was held with one Torres Strait Islander community to discuss the possibility of piloting a small project that focused on working with parents and children to learn about early mathematics processes. Preliminary data indicated that parents use networks in their community. It highlighted the funds of knowledge of mathematics that exist in the community and which are used to teach their children. Such knowledges are situated within a community’s unique histories, culture and the voices of the people. “Omei” tree means the Tree of Wisdom in the Island community.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider numerical simulation of fractional model based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in advection and diffusion terms belong to the intervals (0; 1) or (1; 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of the Riemann-Liouville and Gr¨unwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Contemporary mathematics education attempts to instil within learners the conceptualization of mathematics as a highly organized and inter-connected set of ideas. To support this, a means to graphically represent this organization of ideas is presented which reflects the cognitive mechanisms that shape a learner’s understanding. This organisation of information may then be analysed, with the view to informing the design of mathematics instruction in face-to-face and/or computer-mediated learning environments. However, this analysis requires significant work to develop both theory and practice.
Resumo:
Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.
Resumo:
Learning to think spatially in mathematics involves developing proficiency with graphics. This paper reports on 2 investigations of spatial thinking and graphics. The first investigation explored the importance of graphics as 1 of 3 communication systems (i.e. text, symbols, graphics) used to provide information in numeracy test items. The results showed that graphics were embedded in at least 50 % of test items across 3 year levels. The second investigation examined 11 – 12-year-olds’ performance on 2 mathematical tasks which required substantial interpretation of graphics and spatial thinking. The outcomes revealed that many students lacked proficiency in the basic spatial skills of visual memory and spatial perception and the more advanced skills of spatial orientation and spatial visualisation. This paper concludes with a reaffirmation of the importance of spatial thinking in mathematics and proposes ways to capitalize on graphics in learning to think spatially.
Resumo:
In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quanti- tative data based around the students’ approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to under- standing a new mathematical model: gathering information for the task of understanding the model, practising with and using the model, and finding interrelationships between elements of the model. We found that the students appreciate mathematical models that have a real world application and that this can be used to engage students in higher level learning approaches.
Resumo:
Since 2004, the Australian Learning and Teaching Council (ALTC) and its predecessor, the Carrick Institute for Learning and Teaching in Higher Education, have funded numerous teaching and educational research-based projects in the Mathematical Sciences. In light of the Commonwealth Government’s decision to close the ALTC in 2011, it is appropriate to take account of the ALTCs input into the Mathe- matical Sciences in higher education. Here we present an overview of ALTC projects in the Mathematical Sciences, as well as report on the contributions they have made to the Discipline.
Resumo:
In the 21st century mathematics proficiency is synonymous with a numerate citizenry. In the past few decades young children’s ability to reason mathematically and develop mathematical proficiencies has been recognised. This paper explores the history of early childhood mathematics (ECME) that may explicate differences in Chinese and Australian contexts. Results of this review established that China and Australia are diametrically positioned in ECME. Influencing each countries philosophies and practices are their cultural beliefs. ECME in China and Australia must be culturally sustainable to achieve excellent outcomes for young children. Ongoing critique and review is necessary to ensure that ECME is meeting the needs of all teachers and children in their particular context. China and Australia with their rich contrasting philosophies can assist each other in their journeys to create exemplary ECME for the 21st century.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
This paper focuses on very young students' ability to engage in repeating pattern tasks and identifying strategies that assist them to ascertain the structure of the pattern. It describes results of a study which is part of the Early Years Generalising Project (EYGP) and involves Australian students in Years 1 to 4 (ages 5-10). This paper reports on the results from the early years' cohort (Year 1 and 2 students). Clinical interviews were used to collect data concerning students' ability to determine elements in different positions when two units of a repeating pattern were shown. This meant that students were required to identify the multiplicative structure of the pattern. Results indicate there are particular strategies that assist students to predict these elements, and there appears to be a hierarchy of pattern activities that help students to understand the structure of repeating patterns.
Resumo:
Language has been of interest to numerous economists since the late 20th century, with the majority of the studies focusing on its effects on immigrants’ labour market outcomes; earnings in particular. However, language is an endogenous variable, which along with its susceptibility to measurement error causes biases in ordinary-least-squares estimates. The instrumental variables method overcomes the shortcomings of ordinary least squares in modelling endogenous explanatory variables. In this dissertation, age at arrival combined with country of origin form an instrument creating a difference-in-difference scenario, to address the issue of endogeneity and attenuation error in language proficiency. The first half of the study aims to investigate the extent to which English speaking ability of immigrants improves their labour market outcomes and social assimilation in Australia, with the use of the 2006 Census. The findings have provided evidence that support the earlier studies. As expected, immigrants in Australia with better language proficiency are able to earn higher income, attain higher level of education, have higher probability of completing tertiary studies, and have more hours of work per week. Language proficiency also improves social integration, leading to higher probability of marriage to a native and higher probability of obtaining citizenship. The second half of the study further investigates whether language proficiency has similar effects on a migrant’s physical and mental wellbeing, health care access and lifestyle choices, with the use of three National Health Surveys. However, only limited evidence has been found with respect to the hypothesised causal relationship between language and health for Australian immigrants.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.