891 resultados para Maternal glycemic control
Resumo:
Purpose The aim of this study was to determine alterations to the corneal subbasal nerve plexus (SNP) over four years using in vivo corneal confocal microscopy (IVCM) in participants with type 1 diabetes and to identify significant risk factors associated with these alterations. Methods A cohort of 108 individuals with type 1 diabetes and no evidence of peripheral neuropathy at enrollment underwent laser-scanning IVCM, ocular screening, and health and metabolic assessment at baseline and the examinations continued for four subsequent annual visits. At each annual visit, eight central corneal images of the SNP were selected and analyzed to quantify corneal nerve fiber density (CNFD), branch density (CNBD) and fiber length (CNFL). Linear mixed model approaches were fitted to examine the relationship between risk factors and corneal nerve parameters. Results A total of 96 participants completed the final visit and 91 participants completed all visits. No significant relationships were found between corneal nerve parameters and time, sex, duration of diabetes, smoking, alcohol consumption, blood pressure or BMI. However, CNFD was negatively associated with HbA1c (β=-0.76, P<0.01) and age (β=-0.13, P<0.01) and positively related to high density lipids (HDL) (β=2.01, P=0.03). Higher HbA1c (β=-1.58, P=0.04) and age (β=-0.23, P<0.01) also negatively impacted CNBD. CNFL was only affected by higher age (β=-0.06, P<0.01). Conclusions Glycemic control, HDL and age have significant effects on SNP structure. These findings highlight the importance of diabetic management to prevent corneal nerve damage as well as the capability of IVCM for monitoring subclinical alterations in the corneal SNP in diabetes.
Resumo:
The prevalence of latent autoimmune diabetes in adults (LADA) in patients diagnosed with type 2 diabetes mellitus (T2DM) ranges from 7 to 10% (1). They present at a younger age and have a lower BMI but poorer glycemic control, which may increase the risk of complications (2). However, a recent analysis of the Collaborative Atorvastatin Diabetes Study (CARDS) has demonstrated no difference in macrovascular or microvascular events between patients with LADA and T2DM, but neuropathy was not assessed (3). Previous studies quantifying neuropathy in patients with LADA are limited. In this study, we aimed to accurately quantify neuropathy in subjects with LADA compared with matched patients with T2DM.
Resumo:
Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.
Resumo:
Introduction: The pathogenesis of diabetic nephropathy remains a matter of debate, although strong evidence suggests that it results from the interaction between susceptibility genes and the diabetic milieu. The true pathogenetic mechanism remains unknown, but a common denominator of micro- and macrovascular complications may exist. Some have suggested that low-grade inflammation and activation of the innate immune system might play a synergistic role in the pathogenesis of diabetic nephropathy. Aims of the study: The present studies were undertaken to investigate whether low-grade inflammation, mannan-binding lectin (MBL) and α-defensin play a role, together with adiponectin, in patients with type 1 diabetes and diabetic nephropathy. Subjects and methods: This study is part of the ongoing Finnish Diabetic Nephropathy Study (FinnDiane). The first four cross-sectional substudies of this thesis comprised 194 patients with type 1 diabetes divided into three groups (normo-, micro-, and macroalbuminuria) according to their albumin excretion rate (AER). The fifth substudy aimed to determine whether baseline serum adiponectin plays a role in the development and progression of diabetic nephropathy. This follow-up study included 1330 patients with type 1 diabetes and a mean follow-up period of five years. The patients were divided into three groups depending on their AER at baseline. As a measure of low-grade inflammation, highly sensitive CRP (hsCRP) and α-defensin were measured with radio-immunoassay, and interleukin-6 (IL-6) with high- sensitivity enzyme immuno-assay. Mannan-binding lectin and adiponectin were determined with time-resolved immunofluorometric assays. The progression of albuminuria from one stage to the other served as a measure of the progression of diabetic nephropathy. Results: Low-grade inflammatory markers, MBL, adiponectin, and α-defensin were all associated with diabetic nephropathy, whereas MBL, adiponectin, and α-defensin per se were unassociated with low-grade inflammatory markers. AER was the only clinical variable independently associated with hsCRP. AER, HDL-cholesterol and the duration of diabetes were independently associated with IL-6. HbA1c was the only variable independently associated with MBL. The estimated glomerular filtration rate (eGFR), AER, and waist-to-hip ratio were independently associated with adiponectin. Systolic blood pressure, HDL-cholesterol, total cholesterol, age, and eGFR were all independently associated with α-defensin. In patients with macroalbuminuria, progression to end-stage renal disease (ESRD) was associated with higher baseline adiponectin concentrations. Discussion and conclusions: Low-grade inflammation, MBL, adiponectin, and defensin were all associated with diabetic nephropathy in these cross-sectional studies. In contrast however, MBL, adiponectin, and defensin were not associated with low-grade inflammatory markers per se. Nor was defensin associated with MBL, which may suggest that these different players function in a coordinated fashion during the deleterious process of diabetic nephropathy. The question of what causes low-grade inflammation in patients with type 1 diabetes and diabetic nephropathy, however, remains unanswered. We could observe in our study that glycemic control, an atherosclerotic lipid profile, and waist-to-hip ratio (WHR) were associated with low-grade inflammation in the univariate analysis, although in the multivariate analysis, only AER, HDL-cholesterol, and the duration of diabetes, as a measure of glycemic load, proved to be independently associated with inflammation. Notably, all these factors are modifiable with changes in lifestyle and/or with a targeted medication. In the follow-up study, elevated serum adiponectin levels at baseline predicted the progression from macroalbuminuria to ESRD independently of renal function at baseline. This observation does not preclude adiponectin as a favorable factor during the process of diabetic nephropathy, since the rise in serum adiponectin concentrations may remain a mechanism by which the body compensates for the demands created by the diabetic milieu.
Resumo:
Diabetes is a chronic disease requiring continuous medical supervision and patient education to prevent acute secondary complications. In this study, we have harnessed the inherent property of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid formation, to generate a form that exhibits controlled and sustained release for extended periods. Administration of a single dose of the insulin oligomer, defined here as the supramolecular insulin assembly II (SIA-II), to experimental animals rendered diabetic by streptozotocin or alloxan, released the hormone capable of maintaining physiologic glucose levels for > 120 days for bovine and > 140 days for recombinant human insulin without fasting hypoglycemia. Moreover, the novel SIA-II described here not only improved the glycemic control, but also reduced the extent of secondary diabetic complications.
Resumo:
Resumen: Esta investigación tuvo por objetivo conocer, mediante un diseño ex post facto, cómo influyen las prácticas parentales percibidas por el adolescente sobre su capacidad de experimentar emociones positivas. Participaron 210 adolescentes argentinos de ambos sexos, de entre 14 y 16 años. Para obtener los datos se utilizó el Cuestionario de Emociones Positivas (Schmidt, 2008), y la Versión Abreviada de una Adaptación Argentina del Children’s Report of Parental Behavior Inventory (Richaud de Minzi, 2005). Los resultados revelaron que el control patológico y la autonomía extrema materna obstaculizan la experiencia de ciertas emociones positivas en los hijos. Con relación a las prácticas paternas, la combinación del control patológico, la baja aceptación y la autonomía extrema otorgada dificulta la experiencia emocional de los hijos.
Resumo:
O objeto de estudo é o resultado do controle glicêmico proveniente da infusão contínua de insulina (ICI) em pacientes sépticos da terapia intensiva. Os objetivos foram determinar a incidência de hipoglicemia encontrada entre pacientes de duas Unidades de Terapia Intensiva (UTI), que receberam ICI e sua relação com os valores da faixa-alvo de cada protocolo e discutir as implicações para a prática de enfermagem relacionadas à incidência de hipoglicemia. Trata-se de estudo transversal, bicêntrico, retrospectivo, com técnica de coleta de dados por análise do prontuário e avaliação quantitativa dos mesmos. Desenvolvida em duas UTIs, uma de um hospital de oncologia da rede federal e outra de um hospital geral da rede estadual do estado do Rio de Janeiro. As medidas glicêmicas de pacientes sépticos que utilizaram ICI no ano de 2010 nas duas UTIs foram transcritas para o instrumento de coleta de dados, gerando 2213 medidas em 29 pacientes (11,88%) na UTI 1 e 923 medidas em 20 pacientes (9,85%) na UTI 2. Os registros de hipoglicemia foram divididos em duas categorias: as medidas com valores definidos pelo protocolo adotado e aquelas com valores inferiores a 50mg/dL, caracterizados como hipoglicemia grave pelo Institute for Healthcare Improvement; nas duas categorias houve a necessidade de intervenção com a administração de glicose hipertônica a 50%. Dezesseis pacientes da UTI 1 apresentaram hipoglicemia, sendo quatro (25,00%) com medidas entre 50 e 60mg/dL e doze (75,00%) com medidas inferiores a 50mg/dL; treze pacientes da UTI 2 apresentaram hipoglicemia, sendo dez (76,92%) com medidas entre 50 e 80mg/dL e três (23,08%) com medidas inferiores a 50mg/dL. O cálculo da incidência considerou o total dos episódios de hipoglicemia independente da categoria. Comparando as duas UTIs, foi encontrada na UTI 1 uma incidência global de hipoglicemia quase cinco vezes maior (22,60:4,54). Na UTI 1, dos 50 episódios de hipoglicemia, 20 registros foram menores que 50mg/dL; na UTI 2, dos 42 episódios de hipoglicemia, 03 registros foram menores que 50mg/dL. A hipoglicemia grave na UTI 1 é 1,5 vezes menor que a hipoglicemia pelo protocolo; na UTI 2, a hipoglicemia grave é treze vezes menor que a hipoglicemia pelo protocolo. Na UTI 1, das 2213 medidas realizadas, 375 medidas glicêmicas ficaram abaixo da faixa alvo. Destas medidas, 50 se caracterizaram como hipoglicemia (375:50) A cada sete ou oito medidas abaixo da faixa-alvo, uma era de hipoglicemia. Na UTI 2, das 923 mensurações, 223 medidas ficaram abaixo do alvo. Destas, 42 medidas foram de hipoglicemia (223:42). Portanto, para cada cinco medidas abaixo da faixa, uma era de hipoglicemia. Considerando-se que a ICI em pacientes sépticos pode contribuir para melhores resultados, a equipe de enfermagem deve estar apta a realizar um controle glicêmico eficaz e com menor risco de hipoglicemia. Subsidiar a equipe com conhecimentos acerca dos fatores predisponentes à hipoglicemia, além de incrementar o nível da assistência de enfermagem prestada, possibilita que haja redução real na incidência deste evento adverso grave.
Resumo:
O exercício físico pode promover o desequilíbrio oxidativo e na secreção e ação das adipocinas, leptina e adiponectina, que desempenham papel fundamental no desenvolvimento de doenças cardiometabólicas, incluindo a síndrome metabólica, disfunção endotelial, desordens inflamatórias e vasculares. Militares são submetidos a exercícios físicos intensos e podem apresentar maior risco de doenças cardiovasculares. A identificação de parâmetros capazes de detectar o risco cardiovascular precoce em grupos muito ativos fisicamente é complexa. A razão leptina/adiponectina (L/A) e a concentração de LDL eletronegativa (LDL (-)) vem sendo considerados bons indicadores de risco cardiovascular precoce porém não há estudos que investiguem a utilidade destes marcadores em militares. Os polifenóis, presentes na uva (Vitis vinífera), apresentam efeitos cardioprotetores como inibição da oxidação das lipoproteínas e controle glicêmico. Na presente tese objetivou-se identificar o risco cardiovascular em jovens militares altamente treinados, utilizando diferentes parâmetros, incluindo a razão L/A e investigar a influência do exercício militar e do uso de dose única de Vitis vinifera sobre parâmetros cardiometabólicos de militares fisicamente treinados. O primeiro estudo contou com a participação de 54 militares d gênero masculino, condicionados fisicamente, após descanso de 24h. No segundo estudo, participaram 54 militares do gênero masculino distribuídos aleatoriamente, de forma duplo-cego, para receber única dose contendo 200 mg de extrato seco de Vitis vinifera (GS, n = 27) ou 200 mg de placebo (amido) (GP, n = 27). Considerados em conjunto, os resultados sugerem que militares treinados poderiam ser classificados como limítrofes quanto ao risco cardiovascular, quando somente o perfil lipídico é empregado como marcador. As medidas de CC e CC/E são parâmetros de fácil obtenção e podem ser empregados na identificação do potencial risco cardiovascular, enquanto outros estudos não confirmam a eficácia da razão L/A para este fim. A comparação das concentrações plasmáticas de adiponectina e leptina apresentou diferença significativa apenas intragrupo para ambos os grupos. As concentrações plasmáticas das adipocinas foram influenciadas pelo treinamento. Os indicadores de homeostase glicêmica, glicemia de jejum e insulina plasmática, foram semelhantes entre os grupos, não sendo sendo influenciada pelo treinamento ou suplementação. A suplementação de polifenóis reduziu as concentrações de LDL(-) do GS em relação ao GP em T24h e T48h (p<0,05). Estes achados sugerem que o treinamento físico afeta a secreção das adipocinas independentemente do uso da Vitis vinífera. Entretanto, a dose única de polifenóis pode reduzir o risco cardiometabólico proveniente da oxidação da LDL (-)
Resumo:
The aim is to critically review the more relevant evidence on the interrelationships between exercise and metabolic outcomes. The research questions addressed in the recent specific literature with the most relevant randomized controlled trials, meta-analysis and cohort studies are presented in three domains: aerobic exercise, resistance exercise, combined aerobic and resistance exercise. From this review appear that the effects of aerobic exercise are well established, and interventions with more vigorous aerobic exercise programs resulted in greater reductions in HbA1c, greater increase in VO2max and greater increase in insulin sensitivity. Considering the available evidence, it appears that resistance training could be an effective intervention to help glycemic control, especially considering that the effects of this form of intervention are comparable with what reported with aerobic exercise. Less studies have investigated whether combined resistance and aerobic training offers a synergistic and incremental effect on glycemic control; however, from the available evidences appear that combined exercise training seems to determine additional change in HbA1c that can be seen significant if compared with aerobic training alone and resistance training alone.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Suppression of angiogenesis during diabetes is a recognized phenomenon but is less appreciated within the context of diabetic retinopathy. The current study has investigated regulation of retinal angiogenesis by diabetic serum and determined if advanced glycation end products (AGEs) could modulate this response, possibly via AGE-receptor interactions. A novel in vitro model of retinal angiogenesis was developed and the ability of diabetic sera to regulate this process was quantified. AGE-modified serum albumin was prepared according to a range of protocols, and these were also analyzed along with neutralization of the AGE receptors galectin-3 and RAGE. Retinal ischemia and neovascularization were also studied in a murine model of oxygen-induced proliferative retinopathy (OIR) in wild-type and galectin-3 knockout mice (gal3(-/-)) after perfusion of preformed AGEs. Serum from nondiabetic patients showed significantly more angiogenic potential than diabetic serum (P <0.0001) and within the diabetic group, poor glycemic control resulted in more AGEs but less angiogenic potential than tight control (P <0.01). AGE-modified albumin caused a dose-dependent inhibition of angiogenesis (P <0.001), and AGE receptor neutralization significantly reversed the AGE-mediated suppression of angiogenesis (P <0.01). AGE-treated wild-type mice showed a significant increase in inner retinal ischemia and a reduction in neovascularization compared with non-AGE controls (P <0.001). However, ablation of galectin-3 abolished the AGE-mediated increase in retinal ischemia and restored the neovascular response to that seen in controls. The data suggest a significant suppression of angiogenesis by the retinal microvasculature during diabetes and implicate AGEs and AGE-receptor interactions in its causation.
Resumo:
BACKGROUND: Individuals with impaired glucose tolerance (IGT) have a greater risk of developing diabetes and cardiovascular disease compared with those with normal glycemic control. The aim of this study was to examine the effects of acute aerobic exercise on glycemia, regional arterial stiffness, and oxidative stress in obese subjects with IGT.
Resumo:
We tested the hypothesis that activation of the protective arm of the renin angiotensin system, the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis, corrects the vasoreparative dysfunction typically seen in the CD34(+) cells isolated from diabetic individuals. Peripheral blood CD34(+) cells from patients with diabetes were compared with those of nondiabetic controls. Ang-(1-7) restored impaired migration and nitric oxide bioavailability/cGMP in response to stromal cell-derived factor and resulted in a decrease in NADPH oxidase activity. The survival and proliferation of CD34(+) cells from diabetic individuals were enhanced by Ang-(1-7) in a Mas/phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. ACE2 expression was lower, and ACE2 activators xanthenone and diminazine aceturate were less effective in inducing the migration in cells from patients with diabetes compared with controls. Ang-(1-7) overexpression by lentiviral gene modification restored both the in vitro vasoreparative functions of diabetic cells and the in vivo homing efficiency to areas of ischemia. A cohort of patients who remained free of microvascular complications despite having a history of longstanding inadequate glycemic control had higher expression of ACE2/Mas mRNA than patients with diabetes with microvascular complications matched for age, sex, and glycemic control. Thus, ACE2/Ang-(1-7)\Mas pathway activation corrects existing diabetes-induced CD34(+) cell dysfunction and also confers protection from development of this dysfunction.
Resumo:
3-Deoxyglucosone (3-DG) is a reactive dicarbonyl sugar thought to be a key intermediate in the nonenzymatic polymerization and browning of proteins by glucose. 3-DG may be formed in vivo from fructose, fructose 3-phosphate, or Amadori adducts to protein, such as N epsilon-fructoselysine (FL), all of which are known to be elevated in body fluids or tissues in diabetes. Modification of proteins by 3-DG formed in vivo is thought to be limited by enzymatic reduction of 3-DG to less reactive species, such as 3-deoxyfructose (3-DF). In this study, we have measured 3-DF, as a metabolic fingerprint of 3-DG, in plasma and urine from a group of diabetic patients and control subjects. Plasma and urinary 3-DF concentrations were significantly increased in the diabetic compared with the control population (0.853 +/- 0.189 vs. 0.494 +/- 0.072 microM, P <0.001, and 69.9 +/- 44.2 vs. 38.7 +/- 16.1 nmol/mg creatinine, P <0.001, respectively). Plasma and urinary 3-DF concentrations correlated strongly with one another, with HbA1c (P <0.005 in all cases), and with urinary FL (P <0.02 and P = 0.005, respectively). The overall increase in 3-DF concentrations in plasma and urine in diabetes and their correlation with other indexes of glycemic control suggest that increased amounts of 3-DG are formed in the body during hyperglycemia in diabetes and then metabolized to 3-DF. These observations are consistent with a role for increased formation of the dicarbonyl sugar 3-DG in the accelerated browning of tissue proteins in diabetes.
Resumo:
Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the atherogenic potential of certain plasma constituents, including low-density lipoprotein (LDL). Glycation of LDL is significantly increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls; enhanced uptake of LDL by macrophages, thus stimulating foam cell formation; increased platelet aggregation; formation of LDL-immune complexes; and generation of oxygen free radicals, resulting in oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterized by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation," occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long-lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age: in diabetes, their rate of accumulation is accelerated. Inhibition of glycation, oxidation, and glycoxidation may form the basis of future antiatherogenic strategies in both diabetic and nondiabetic individuals.