999 resultados para Material strengths
Resumo:
In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.
Resumo:
N,N,N,N-Tetramethylammonium dicyanamide (Me(4)NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and H-1 nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (sigma = 10(-3) S cm(-2) at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, H-1 NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid-solid transitions at ambient temperatures, subsequent H-1 NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (
Resumo:
New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.
Resumo:
The effect of pore structure on the behavior of lithium intercalation into an electrode containing porous V(2)O(5) film has been investigated and compared with the electrode containing a non-porous V(2)O(5) film. X-ray diffraction patterns indicate a lamellar structure for both materials. Nitrogen adsorption isotherms, t-plot method, and Scanning Electronic Microscopy show that the route employed for the preparation of mesoporous V(2)O(5) was successful. The electrochemical performance of these matrices as lithium intercalation cathode materials was evaluated. The porous material reaches stability after several cycles more easily compared with the V(2)O(5) xerogel. Lithium intercalation into the porous V(2)O(5) film electrode is crucially influenced by pore surface and film surface irregularity, in contrast with the non-porous surface of the V(2)O(5) xerogel.
Resumo:
In situ and ex situ studies concerning the new hybrid material vanadium pentoxide xerogel in the presence of the cationic surfactant cetyl pyridinium chloride (V(2)O(5)/CPC) are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V(2)O(5)/CPC hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the infrared bands toward lower energy levels. Electrochemical studies comprising the cyclic voltammetry and the electrochemical impedance spectroscopy techniques showed that the behavior of the hybrid material is considerably influenced by the electrolyte composition. The ion insertion/de-insertion into the V(2)O(5) xerogel structure accompanying the charge transfer process is influenced by the solid-state diffusion process modeled by using the finite-space Warburg element.
Resumo:
Rock bolt stress corrosion cracking (SCC) has been investigated using the linearly increasing stress test (LIST). One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for 1355AXRC, and 800 MPa for MAC and MA840B steels). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. SCC only occurred for environmental conditions which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Different threshold potentials were determined for a range of metallurgies. Cold work was shown to increase the resistance of the steel to SCC. Rock bolt rib geometry does not have a direct impact on the SCC resistance properties of the bolt, although the process by which the ribs are produced can introduce tensile stresses into the bolt which lower its resistance to SCC. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Background Recently, there has been an increase in the incidence of cutaneous leishmaniasis (CL), which represents an important health problem. This increase may be related to the epidemiologic expansion of the infective agent and the increase in tourism in tropical areas. The difficulty in clinical diagnosis, mainly in areas in which CL is not the first consideration of local physicians, has intensified efforts to describe diagnostic tests, which should be specific, sensitive, and practical. Amongst the new tests described are those including nucleic acid amplification (polymerase chain reaction, PCR) and immunohistochemistry (IHC). Methods In this study, we evaluated the sensitivity of a PCR based on small subunit (SSU) ribosomal DNA, in comparison with IHC using Leishmania spp. antibodies, in biopsies embedded in paraffin. Result The results indicated a total sensitivity of 96% (90.9% with PCR and 68.8% with IHC), showing the possibility of using paraffin-embedded biopsies to diagnose CL. Conclusion We propose the use of the two tests together as a routine protocol for diagnosis. This would require the provision of local medical services to perform molecular biology techniques and adequate Leishmania antibodies.
Resumo:
Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction: This ex vivo study evaluated the heat release, time required, and cleaning efficacy of MTwo (VDW, Munich, Germany) and ProTaper Universal Retreatment systems (Dentsply/Maillefer, Ballaigues, Switzerland) and hand instrumentation in the removal of filling material. Methods: Sixty single-rooted human teeth with a single straight canal were obturated with gutta-percha and zinc oxide and eugenol-based cement and randomly allocated to 3 groups (n = 20). After 30-day storage at 37 degrees C and 100% humidity, the root fillings were removed using ProTaper UR, MTwo R, or hand files. Heat release, time required, and cleaning efficacy data were analyzed statistically (analysis of variance and the Tukey test, alpha = 0.05). Results: None of the techniques removed the root fillings completely. Filling material removal with ProTaper UR was faster but caused more heat release. Mtwo R produced less heat release than the other techniques but was the least efficient in removing gutta-percha/sealer. Conclusions: ProTaper UR and MTwo R caused the greatest and lowest temperature increase on root surface, respectively; regardless of the type of instrument, more heat was released in the cervical third. Pro Taper UR needed less time to remove fillings than MTwo R. All techniques left filling debris in the root canals. (I Endod 2010;36:1870-1873)