929 resultados para Marching drills -- Handbooks, manuals, etc
Resumo:
Contents cont'd.--v. 18. German African possessions (late), no. 110-114.--v. 19. Portuguese possessions, no. 115-121.--v. 20. Spanish and Italian possessions : Independent states, no. 122-130.--v. 21. North, Central and South America : Atlantic Islands, no. 131-138.--v. 22. Pacific Islands, no. 139-147.--v. 23. International affairs, no. 148--152.--v. 24. Congresses : German Opinion, no. 153-157.--v. 25. Indemnities, Plebiscites, etc., no. 158-161.
Resumo:
Added t.p.: Peace handbooks.
Resumo:
Includes index.
Resumo:
Vols. for published as Every boy's library, Boy scout ed.
Resumo:
Mode of access: Internet.
Resumo:
G. W. Prothero, general editor.
Resumo:
Introduction: Lower limb function in hurdling is patently asymmetrical. The lead limb undertakes the preparatory and landing steps while the trail limb contends with the hurdle and recovery steps. Discrete loading profiles of these steps will reflect the asymmetrical function and may provide useful insight into injury mechanisms. A pilot study was undertaken to determine the loading profiles of the hurdle, landing and recovery steps of elite male hurdlers. Equivalent data for steps between hurdles, where the running action is more symmetrical, were used for the purpose of comparison, simultaneously minimising the confounding effect of speed. Methodology: In-shoe pressures were recorded (FScan, 200 Hz) for four elite male hurdlers while they completed a routine hurdle drill at a self-selected fast but sub-race speed. The drill comprised of three consecutive hurdles. Data for the hurdle, landing and recovery steps of the first and second hurdles, along with data for the running steps between hurdles 1 and 2, and 2 and 3, were used for the purpose of analysis. Peak pressures within 1cm2 masks were determined for the hallux, first, central and fifth metatarsals (T1, M1, M2–4 and M5 respectively). Peak pressure (kPa) and loading duration (ms) for the hurdle, landing and recovery steps are reported as a percentage of the respective limb-matched values for between-hurdle steps. Results/discussion: For between-hurdle steps, T1, M1 and M2–4 peak pressures were 312/357, 356/306 and 362/368 kPa, lead/trail limbs respectively. For the hurdle, landing and recovery steps, pressures at T1 and M1 increased. For T1 the increases were in the order of 17%, 36% and 8% (hurdle, landing and recovery steps, respectively) while the corresponding increases at M1 were 7%, 54% and 20%. Pressures at M2–4 were similar for all steps, while M5 loaded erratically. For the between-hurdle steps, the loading durations at T1, M1 and M2–4, were 160/162, 170/142 and 190/191 ms, respectively. For the landing step, loading duration decreased for T1, M1and M2–4 (−8%, −19% and −18%, respectively). In the hurdle step, loading duration decreased for the metatarsals but not for T1. Conclusions: The hurdling action leads to regional pressure increases that act for shorter durations in comparison to the between-hurdle running steps. These changes are most notable at the first metatarsal, a common site of foot injury.
Resumo:
Recent advances in diffusion-weighted MRI (DWI) have enabled studies of complex white matter tissue architecture in vivo. To date, the underlying influence of genetic and environmental factors in determining central nervous system connectivity has not been widely studied. In this work, we introduce new scalar connectivity measures based on a computationally-efficient fast-marching algorithm for quantitative tractography. We then calculate connectivity maps for a DTI dataset from 92 healthy adult twins and decompose the genetic and environmental contributions to the variance in these metrics using structural equation models. By combining these techniques, we generate the first maps to directly examine genetic and environmental contributions to brain connectivity in humans. Our approach is capable of extracting statistically significant measures of genetic and environmental contributions to neural connectivity.
Resumo:
Ludwig Levy, Peter W. and Willy Beherends, behind them: Wilma Bo?hammer, Kaethe Krueger, Tomma Thomsen and E?
Resumo:
Many authors have noted that consumer confidence in buying fresh flowers is strongly related to their perceived value in that quality and vase life must be high and consistent over time for consumers to repeat buy. Growers, wholesalers, exporters and retailers seek practical information about recommended handling and treatments at the harvest and postharvest stages, including that relating to flowers native to Australia and South Africa ("wildflowers"). This information is essential for products to be of high quality with an acceptable vase life for the end consumer, especially if exported. Published postharvest manuals generally focus on traditional flower crops and so rarely include many, or any, wildflowers. A manual entitled Postharvest Handling of Australian flowers from Native Plants and Related Species was published in 2002 and addressed this gap, but required updating. This situation presented an opportunity to provide in-depth information to compliment the Australian wildflower quality specifications (see accompanying paper in the same volume), and to assemble the latest knowledge on wildflower quality and postharvest issues. The resultant manual contains extensive information about harvesting, quality issues and recommended postharvest care focussed on wildflowers. Much of the information is documented for the first time, being based on the most up to date research and development (R&D) as well as practical experience of the floral supply chain, researchers and other technical experts. The manual provides practical and detailed information on postharvest treatment of fresh wildflowers for growers, florists, wholesalers and exporters to use on a daily basis. It discusses the many unique features of wildflowers that must be understood and managed in order to maximise their quality and vase life after marketing and export. The manual also includes postharvest advice for 16 flower- and foliage lines for which quality specifications were not produced. This advice is presented according to the same template as the specifications.
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image