960 resultados para Marchaud Fractional Derivative
Resumo:
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05
Resumo:
A relation showing that the Grünwald-Letnikov and generalized Cauchy derivatives are equal is deduced confirming the validity of a well known conjecture. Integral representations for both direct and reverse fractional differences are presented. From these the fractional derivative is readily obtained generalizing the Cauchy integral formula.
Resumo:
2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.
Resumo:
Mathematics Subject Classification: 33E12, 33FXX PACS (Physics Abstracts Classification Scheme): 02.30.Gp, 02.60.Gf
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15
Resumo:
MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45
Resumo:
In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.
Resumo:
We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.
Resumo:
Fractional central differences and derivatives are studied in this article. These are generalisations to real orders of the ordinary positive (even and odd) integer order differences and derivatives, and also coincide with the well known Riesz potentials. The coherence of these definitions is studied by applying the definitions to functions with Fourier transformable functions. Some properties of these derivatives are presented and particular cases studied.
Resumo:
Applied Mathematical Modelling, Vol.33
Resumo:
Journal of Vibration and Control, Vol. 14, Nº 9-10
Resumo:
International Journal of Mathematics and Mathematical Sciences, Vol.2006
Resumo:
Signal Processing, Vol. 83, nº 11
Resumo:
Journal of Vibration and Control, 14(9–10): 1255–1266, 2008
Resumo:
This paper starts by introducing the Grünwald–Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy–Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.