1000 resultados para Marcel R. Escoffier
Resumo:
beta-Lactam antimicrobials are known to have a low concentration/therapeutic response. However, extending the period in which beta-lactam are free in the plasma does directly influence therapeutic outcomes. The objective of this study was to evaluate the influence of Pluronic (R) F68 on the antimicrobial activity of ceftazidime when admixed with aminophylline in parenteral solutions by the evaluation of its minimal inhibitory concentration (MIC) within 24 h. Ceftazidime, aminophylline, and Pluronics (R) F68 were evaluated using the MIC method against Escherichia coli and Pseudomonas aeruginosa, with these compounds individually and associated in the same parenteral solutions. When Pluronics (R) F68 was admixtured with ceftazidime alone or with ceftazidime and aminophylline, it was possible to observe lower MIC values not only at 24 h but also at 0 h for both microorganisms. This indicates that Pluronics (R) F68 may be able to enhance ceftazidime antimicrobial activity in the presence or absence of aminophylline. This fact suggests that Pluronics (R) F68 can be applied to allow the administration of ceftazidime under continuous infusion in parenteral solutions, beneficiating hospital pharmacotherapy. It may also be possible to reduce ceftazidime doses in formulations achieving the same therapeutic results. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:715-720, 2011
Resumo:
High-performance liquid-chromatographic (HPLC) methods were validated for determination of pravastatin sodium (PS), fluvastatin sodium (FVS), atorvastatin calcium (ATC), and rosuvastatin calcium (RC) in pharmaceuticals. Two stability-indicating HPLC methods were developed with a small change (10%) in the composition of the organic modifier in the mobile phase. The HPLC method for each statin was validated using isocratic elution. An RP-18 column was used with mobile phases consisting of methanol-water (60:40, v/v, for PS and RC and 70:30, v/v, for FVS and ATC). The pH of each mobile phase was adjusted to 3.0 with orthophosphoric acid, and the flow rate was 1.0mL/min. Calibration plots showed correlation coefficients (r)0.999, which were calculated by the least square method. The detection limit (DL) and quantitation limit (QL) were 1.22 and 3.08 mu g/mL for PS, 2.02 and 6.12 mu g/mL for FVS, 0.44 and 1.34 mu g/mL for ATC, and 1.55 and 4.70 mu g/mL for RC. Intraday and interday relative standard deviations (RSDs) were 2.0%. The methods were applied successfully for quantitative determination of statins in pharmaceuticals.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
Two sponge's belonging to the family Latrunculiidae (Negombata and Latrunculia sp.) collected during scientific trawling operations in Prydz Bay, Antarctica, and by scuba off Port Campbell, Victoria, have yielded a new antibacterial pyrroloiminoquinone, discorhabdin R (2). The structure was assigned as 2 on the basis of detailed, spectroscopic analysis and comparison with the known co-metabolite discorhabdin B (3).
Resumo:
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical degradation of different glyphosate herbicide formulations on RuO(2) and IrO(2) DSA(A (R)) electrodes is investigated. Parameters that could influence the formation of organochloride compounds during electrolysis are studied. The effects of chloride concentration, electrodic composition, current density, and electrolysis time are reported. The influence of the oxide composition on herbicide degradation seems to be almost insignificant; however, there is a straight relationship between anode composition and organic halides formation. Commercial herbicide formulations have lower degradation rates and lead to the formation of a larger quantities of organochloride compounds. In high chloride concentrations, there is a significant increase in organic mineralization, and the relationship between chloride concentration and organic halides formation is direct. Only in low chloride medium investigated the organochloride concentration obtained was below the limit values allowed in Brazil. The determination of organic halides absorbable (AOX) during electrolysis increases significantly with the applied current. Even during long-term electrolysis, a large amount of organochloride compounds is formed.
Resumo:
We characterize asymmetric equilibria in two-stage process innovation games and show that they are prevalent in the different models of R&D technology considered in the literature. Indeed, cooperation in R&D may be accompanied by high concentration in the product market. We show that while such an increase may be profitable, it may be socially inefficient.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.