929 resultados para Mammary tumor
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.
Resumo:
Triplex cell vaccine is a cancer immunopreventive cell vaccine that can prevent almost completely mammary tumor onset in HER-2/neu transgenic mice. A future translation of cancer immunoprevention from preclinical to clinical studies should take into account several aspects. The work reported in this thesis deals with the study of three of these aspects: vaccine schedule, activity in a therapeutic set-up and second-generation DNA vaccines. An important element in determining human acceptance and compliance of a treatment protocol is the number of vaccinations. In order to improve the vaccination schedule a minimal protocol was searched, i.e. a schedule consisting of a lower number of administrations than standard protocol but with a similar efficacy. A candidate optimal protocol was identified by the use of an in silico model, SimTriplex simulator. The in vivo test of this schedule in HER-2/neu transgenic mice only partially confirmed in silico predictions. This result shows that in silico models have the potential ability to aid in searching of optimal treatment protocols, provided that they will be further tuned on experimental data. As a further result this preclinical study highlighted that kinetic of antibody response plays a major role in determining cancer prevention, leading to the hypothesis of a threshold that must be reached rapidly and maintained lifetime. Early clinical trials would be performed in a therapeutic, rather than preventive, setting. Thus, the activity of Triplex vaccine was investigated against experimental lung metastases in HER-2/neu transgenic mice in order to evaluate if the immunopreventive Triplex vaccine could be effective also against a pre-existing tumor mass. This preclinical model of aggressive metastatic development showed that the vaccine was an efficient treatment also 4 for the cure of micrometastases. However the immune mechanisms activated against tumor mass were not antibody dependent, i.e. different from those preventing the onset of primary mammary carcinoma. DNA vaccines could be more easily used than cellular ones. A second generation of Triplex vaccine based on DNA plasmids was evaluated in an aggressive preclinical model (BALBp53neu female mice) and compared with the preventive ability of cellular Triplex vaccine. It was observed that Triplex DNA vaccine was as effective as Triplex cell vaccine, exploiting a more restricted immune stimulation.
Resumo:
Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.
Resumo:
An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^
Resumo:
All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously.
Resumo:
o,p'-DDT is a major component of the pesticide DDT (dichlorodiphenyltrichloro ethane, technical grade). Although possessing little insecticidal ability, the o,p'- isomer has two major biological activities which affect mammalian reproductive systems: it is estrogenic, and it induces hepatic mixed function oxidase enzymes. The focus of this work is the characterization of the estrogenic properties of o,p'-DDT in rodents.^ Initial studies examined the ability of o,p'-DDT to bind to and interact with elements of the estrogen receptor system. In an in vitro assay, DDT was shown to compete with 17(beta)-estradiol (E(,2)) for binding to cytoplasmic estrogen receptors (R(,c)) from normal and neoplastic tissues in two rodent species. The following phenomena were studied by measuring receptor levels from uteri (whole uteri and/or uterine cell types) taken from immature ovariectomized rats given one acute injection of o,p'-DDT or E(,2): the translocation of the R(,c) to the nucleus, nuclear receptor (R(,n)) retention patterns, and the subsequent reappearance of R(,c) in the cytoplasm.^ The magnitude and temporal patterns of the biological responses of uteri from similar immature rats were compared following o,p'-DDT and E(,2) exposure. The responses examined included increased "Induced Protein" synthesis (in vitro); and uterine wet weight, DNA synthesis and mitosis (in vivo).^ From dose-response data, correlations were made between R(,n) levels and levels of subsequent biological responses. The aim was to lend support to the premise that biological responses to o,p'-DDT exposure occur as a result of its interaction with the classical estrogen receptor system. Correlation coefficients of 0.95 to 0.98 were obtained between R(,n) levels and levels of responses examined, strongly supporting this hypothesis.^ Finally, o,p'-DDT was shown to be as effective as E(,2) in supporting the growth of a transplantable estrogen-responsive mammary tumor in adult rats (although it was unable to support the growth of a transplantable estrogen-dependent renal tumor in hamsters). While the positive result cannot be directly extrapolated to human or animal exposure to environmental estrogens, it suggests that hyperplastic responses of estrogen sensitive tissues should be considered as a possible toxicity of o,p'-DDT, related compounds having estrogenic properties, and other environmental estrogens. ^
Resumo:
Human lipocalin 2 is described as the neutrophil gelatinase-associated lipocalin (NGAL). The lipocalin 2 gene encodes a small, secreted glycoprotein that possesses a variety of functions, of which the best characterized function is organic iron binding activity. Elevated NGAL expression has been observed in many human cancers including breast, colorectal, pancreatic and ovarian cancers. I focused on the characterization of NGAL function in chronic myelogenous leukemia (CML) and breast cancer. Using the leukemic xenograft mouse model, we demonstrated that over-expression of NGAL in K562 cells, a leukemic cell line, led to a higher apoptotic rate and an atrophy phenotype in the spleen of inoculated mice compared to K562 cells alone. These results indicate that NGAL plays a primary role in suppressing hematopoiesis by inducing apoptosis within normal hematopoietic cells. In the breast cancer project, we analyzed two microarray data sets of breast cancer cell lines ( n = 54) and primary breast cancer samples (n = 318), and demonstrated that high NGAL expression is significantly correlated with several tumor characteristics, including negative estrogen receptor (ER) status, positive HER2 status, high tumor grade, and lymph node metastasis. Ectopic NGAL expression in non-aggressive (ZR75.1 and MCF7) cells led to aggressive tumor phenotypes in vitro and in vivo. Conversely, knockdown of NGAL expression in various breast cancer cell lines by shRNA lentiviral infection significantly decreased migration, invasion, and metastasis activities of tumor cells both in vitro and in vivo . It has been previously reported that transgenic mice with a mutation in the region of trans-membrane domain (V664E) of HER2 develop mammary tumors that progress to lung metastasis. However, we observed that genetic deletion of the 24p3 gene, a mouse homolog of NGAL, in HER2 transgenic mice by breeding with 24p3-null mice resulted in a significant delay of mammary tumor formation and reduction of lung metastasis. Strikingly, we also found that treatment with affinity purified 24p3 antibodies in the 4T1 breast cancer mice strongly reduced lung metastasis. Our studies provide evidence that NGAL plays a critical role in breast cancer development and progression, and thus NGAL has potential as a new therapeutic target in breast cancer.^
Resumo:
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^
Resumo:
Transgenic mice carrying a bovine alpha-lactalbumin (alpha-lac) specific ribozyme gene under the transcriptional control of the mouse mammary tumor virus long terminal repeat were generated and cross-bred with animals that highly express a bovine alpha-lac transgene (0.4 mg of alpha-lac/ml(-1) of milk). The ribozyme contains the hammerhead catalytic domain, flanked by 12-nt sequences complementary to the 3' untranslated region of bovine alpha-lac transcript. High-level expression of the ribozyme gene was detected by Northern blot analysis in the mammary gland of 7-8 day lactating transgenic mice, from 3 of 12 lines analyzed. Heterozygous expression of the ribozyme resulted in a reduction in the levels of the target mRNA to 78, 58, and 50% of that observed in the nonribozyme transgenic littermate controls for three independent lines. The ribozyme-mediated reduction in the levels of the bovine protein paralleled that observed for the mRNA, and was positively correlated with the level of expression of the ribozyme. In nonribozyme expressing transgenic mice, the level of bovine alpha-lac mRNA and protein was not affected. The specificity of this activity is demonstrated by the absence of a reduction in the levels of the endogenous murine alpha-lac mRNA or protein. These results demonstrate the feasibility of ribozyme-mediated down-regulation of highly-expressed transcripts in transgenic animals.
Resumo:
A highly fluorescent mutant form of the green fluorescent protein (GFP) has been fused to the rat glucocorticoid receptor (GR). When GFP-GR is expressed in living mouse cells, it is competent for normal transactivation of the GR-responsive mouse mammary tumor virus promoter. The unliganded GFP-GR resides in the cytoplasm and translocates to the nucleus in a hormone-dependent manner with ligand specificity similar to that of the native GR receptor. Due to the resistance of the mutant GFP to photobleaching, the translocation process can be studied by time-lapse video microscopy. Confocal laser scanning microscopy showed nuclear accumulation in a discrete series of foci, excluding nucleoli. Complete receptor translocation is induced with RU486 (a ligand with little agonist activity), although concentration into nuclear foci is not observed. This reproducible pattern of transactivation-competent GR reveals a previously undescribed intranuclear architecture of GR target sites.
Resumo:
The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.
Resumo:
The localization, trafficking, and fluorescence of Aequorea green fluorescent protein (GFP) in cultured vertebrate cells transiently transfected with GFP cDNA were studied. Fluorescence of GFP in UV light was found to be strongest when cells were incubated at 30 degrees C but was barely visible at an incubation temperature of 37 degrees C. COS-1 cells, primary chicken embryonic retina cells, and carp epithelial cells were fluorescently labeled under these conditions. GFP was distributed uniformly throughout the cytoplasm and nucleus independent of cell type examined. When GFP was fused to PML protooncogene product, fluorescence was detected in a unique nuclear organelle pattern indistinguishable from that of PML protein, showing the potential use of GFP as a fluorescent tag. To analyze both function and intracellular trafficking of proteins fused to GFP, a GFP-human glucocorticoid receptor fusion construct was prepared. The GFP-human glucocorticoid receptor efficiently transactivated the mouse mammary tumor virus promoter in response to dexamethasone at 30 degrees C but not at 37 degrees C, indicating that temperature is important, even for function of the GFP fusion protein. The dexamethasone-induced translocation of GFP-human glucocorticoid receptor from cytoplasm to nucleus was complete within 15 min; the translocation could be monitored in a single living cell in real time.