992 resultados para Magnesium Alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors that influence alloying zirconium to magnesium with a Mg-33.3Zr master alloy and the subsequent grain refinement are discussed based on a large number of experiments conducted at the laboratory scale (up to 30 kg of melt). It is shown that the zirconium particles released from the Zirmax(R) master alloy must be brought into thorough contact with the melt by an appropriate stirring process in order to attain a good dissolution of zirconium. The influence of alloying temperature on the recovery of zirconium was found to be negligible in the range from 680 to 780 degreesC. An ideal zirconium alloying process should end up with both high soluble and high total zirconium in the melt in order to achieve the best grain refinement in the final alloy. The distribution of zirconium in the final alloy microstructure is inhomogeneous and almost all of the zirconium in solution is concentrated in zirconium-rich cores in the microstructure.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new zirconium-rich magnesium-zirconium master alloy (designated AM-cast) has been developed by the CRC for Cast Metals Manufacturing in collaboration with Australian Magnesium Corporation for use as a grain refiner for magnesium alloys that do not contain aluminium. This work describes the microstructural characteristics of this new grain refiner and its grain refining ability when added to different magnesium alloys under various conditions (alloying temperature from 680 °C to 750 °C; weight of melt from 1 kg to 150 kg and sample thickness from 7 mm to 62 mm). Owing to its highly alloyable microstructure, AM-cast can be readily introduced into molten magnesium at any temperature when assisted by a few minutes of stirring or puddling. Little sludge has been found at the bottom of the alloying vessel in these trials due to the fine zirconium particles contained in the master alloy. The recovery of zirconium is normally in the range from 40% to 60% with respect to 1% zirconium addition as the master alloy. It is shown that this new master alloy is an excellent grain refiner for aluminium-free magnesium alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, specifications for mechanical properties of casting alloys were based on separately cast test bars. This practice provided consistently reproducible results; thus, any change in conditions was reflected in changes in the mechanical properties of the test coupons. These test specimens, however, did not necessarily reflect the actual mechanical properties of the castings they were supposed to represent'. Factors such as section thickness and casting configuration affect the solidification rate and soundness of the casting thereby raising or lowering its mechanical properties in comparison with separately cast test specimens. In the work now reported, casting shapes were developed to investigate the variations of section thickness, chemical analysis and heat treatment on the mechanical properties of a high strength Aluminium alloy under varying chilling conditions. In addition, an insight was sought into the behaviour of chills under more practical conditions. Finally, it was demonstrated that additional information could be derived from the radiographs which form an essential part of the quality control of premium quality castings. As a result of the work, it is now possible to select analysis and chilling conditions to optimize the as cast and the heat treated mechanical properties of Aluminum 7% Silicon 0.3% Magnesium alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in biomaterials have enabled medical practitioners to replace diseased body parts or to assist in the healing process. In situations where a permanent biomaterial implant is used for a temporary application, additional surgeries are required to remove these implants once the healing process is complete, which increases medical costs and patient morbidity. Bio-absorbable materials dissolve and are metabolized by the body after the healing process is complete thereby negating additional surgeries for removal of implants. Magnesium alloys as novel bio-absorbable biomaterials, have attracted great attention recently because of their good mechanical properties, biocompatibility and corrosion rate in physiological environments. However, usage of Mg as biodegradable implant has been limited by its poor corrosion resistance in the physiological solutions. An optimal biodegradable implant must initially have slow degradation to ensure total mechanical integrity then degrade over time as the tissue heals. The current research focuses on surface modification of Mg alloy (MZC) by surface treatment and polymer coating in an effort to enhance the corrosion rate and biocompatibility. It is envisaged that the results obtained from this investigation would provide the academic community with insights for the utilization of bio-absorbable implants particularly for patients suffering from atherosclerosis. The alloying elements used in this study are zinc and calcium both of which are essential minerals in the human metabolic and healing processes. A hydrophobic biodegradable co-polymer, polyglycolic-co-caprolactone (PGCL), was used to coat the surface treated MZC to retard the initial degradation rate. Two surface treatments were selected: (a) acid etching and (b) anodization to produce different surface morphologies, roughness, surface energy, chemistry and hydrophobicity that are pivotal for PGCL adhesion onto the MZC. Additionally, analyses of biodegradation, biocompatibility, and mechanical integrity were performed in order to investigate the optimum surface modification process, suitable for biomaterial implants. The study concluded that anodization created better adhesion between the MZC and PGCL coating. Furthermore, PGCL coated anodized MZC exhibited lower corrosion rate, good mechanical integrity, and better biocompatibility as compared with acid etched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys' mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This important book summarises the wealth of recent research on our understanding of process-property relationships in wrought magnesium alloys and the way this understanding can be used to develop a new generation of alloys for high-performance applications. After an introductory overview of current developments in wrought magnesium alloys, part one reviews fundamental aspects of deformation behaviour. These chapters are the building blocks for the optimisation of processing steps covered in part two, which discusses casting, extrusion, rolling and forging technologies. The concluding chapters cover applications of wrought magnesium alloys in automotive and biomedical engineering. With its distinguished editors, and drawing on the work of leading experts in the field, Advances in wrought magnesium alloys is a standard reference for those researching, manufacturing and using these alloys.