964 resultados para Machine-tools


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In engineering practical systems the excitation source is generally dependent on the system dynamic structure. In this paper we analyze a self-excited oscillating system due to dry friction which interacts with an energy source of limited power supply (non ideal problem). The mechanical system consists of an oscillating system sliding on a moving belt driven by a limited power supply. In the oscillating system considered here, dry friction acts as an excitation mechanism for stick-slip oscillations. The stick-slip chaotic oscillations are investigated because the knowledge of their dynamic characteristics is an important step in system design and control. Many engineering systems present stick-slip chaotic oscillations such as machine tools, oil well drillstrings, car brakes and others.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to their high hardness and wear resistance, Si3N4 based ceramics are one of the most suitable cutting tool materials for machining cast iron, nickel alloys and hardened steels. However, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. This necessitates a process optimization when machining superalloys with Si3N4 based ceramic cutting tools. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of α-SiAlON tool in turning Ti-6Al-4V alloy at high cutting conditions, up to 250 m min-1, without coolant. Tool wear, failure modes and temperature were monitored to access the performance of the cutting tool. Test results showed that the performance of α-SiAl0N tool, in terms of tool life, at the cutting conditions investigated is relatively poor due probably to rapid notching and excessive chipping of the cutting edge. These facts are associated with adhesion and diffusion wear rate that tends to weaken the bond strength of the cutting tool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The α-SiAlON ceramic cutting tool insert is developed. Silicon nitride and additives powders are pressed and sintered in the form of cutting tool inserts at temperature of 1900 °C. The physics and mechanical properties of the inserts like green density, weight loss, relative density, hardness and fracture toughness are evaluated. Machining studies are conducted on grey cast iron workpiece to evaluate the performance of α-SiAlON ceramic cutting tool. In the paper the cutting tool used in higher speed showed an improvement in the tribological interaction between the cutting tools and the grey cast iron workpiece resulted in a significant reduction of flank wear and roughness, because of better accommodation and the presence of the graphite in gray cast iron. The above results are discussed in terms of their affect at machining parameters on gray cast iron.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to their high hardness and wear resistance Si3N4 based ceramics are one of the most suitable cutting tool materials for machining hardened materials. Therefore, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. Improvement of the functional properties these tools and reduction of the ecological threats may be accomplished by employing the technology of putting down hard coatings on tools in the state-of-the-art PVD processes, mostly by improvement of the tribological contact conditions in the cutting zone and by eliminating the cutting fluids. However in this paper was used a Si3N4 based cutting tool commercial with a layer TiN coating. In this investigation, the performance of TiN coating was assessed on turning used to machine an automotive grade compacted graphite iron. As part of the study were used to characterise the performance of cutting tool, flank wear, temperature and roughness. The results showed that the layer TiN coating failed to dry compacted graphite iron under aggressive machining conditions. However, using the measurement of flank wear technique, the average tool life of was increased by VC=160 m/min.The latter was also observed using a toolmakers microscope and scanning electron microscopy (SEM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron. © (2010) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In heavy machining industries, a critical point that must be taken into account is setup. Because the characteristics of machine tools and parts to be machined, usually pieces robust and large, the preparation of these parts must be made accurately for machining has a good result as planned. As a result of the difficulty raised in the setup machining of heavy parts, companies in this segment seek alternatives to reduce the unproductive time caused by setup and optimize machining processes. One way was found that these companies create operating instructions that describe and standardize the operation between its employees, as well as deploy a control machining times to measure the unproductive time caused by the setup. This work studied a new system for the realization of centering and alignment of Rotating Deck R-9350 in CNC Milling Machine PAMA Speedram 3000, in Liebherr Brazil company. The part Rotating Deck R-9350 is a critical part in which its machining in PAMA Milling Machine is made in three phases and their setup times are quite high and involve stopping the machine. It has been tested and proposed a solution to the realization of this part of the setup without the use of the machine, but of the measuring instrument three-dimensional Laser tracker, with which the machine continued to work, while he was in the centering and alignment of other parts. It was noted that the instrument technically attended the need and it was possible to perform this operation more accurately

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pesquisadores e indústrias de todo o mundo estão firmemente comprometidos com o propósito de fazer o processo de usinagem ser precisamente veloz e produtivo. A forte concorrência mundial gerou a procura por processos de usinagem econômicos, com grande capacidade de produção de cavacos e que produzam peças com elevada qualidade. Dentre as novas tecnologias que começaram a ser empregadas, e deve tornar-se o caminho certo a ser trilhado na busca da competitividade em curto espaço de tempo, está a tecnologia de usinagem com altas velocidades (HSM de High Speed Machining). A tecnologia HSM surge como componente essencial na otimização dos esforços para manutenção e aumento da competitividade global das empresas. Durante os últimos anos a usinagem com alta velocidade tem ganhado grande importância, sendo dada uma maior atenção ao desenvolvimento e à disponibilização no mercado de máquinas-ferramentas com rotações muito elevadas (20.000 - 100.000 rpm). O processo de usinagem com alta velocidade está sendo usado não apenas para ligas de alumínio e cobre, mas também para materiais de difícil usinabilidade, como os aços temperados e superligas à base de níquel. Porém, quando se trata de materiais de difícil corte, têm-se observado poucas publicações, principalmente no processo de torneamento. Mas, antes que a tecnologia HSM possa ser empregada de uma forma econômica, todos os componentes envolvidos no processo de usinagem, incluindo a máquina, o eixo-árvore, a ferramenta e o pessoal, precisam estar afinados com as peculiaridades deste novo processo. No que diz respeito às máquinas-ferramenta, isto significa que elas têm que satisfazer requisitos particulares de segurança. As ferramentas, devido à otimização de suas geometrias, substratos e revestimentos, contribuem para o sucesso deste processo. O presente trabalho objetiva estudar o comportamento de diversas geometrias ) de insertos de cerâmica (Al2O3 + SiCw e Al2O3 + TIC) e PCBN com duas concentrações de CBN na forma padrão, assim como modificações na geometria das arestas de corte empregadas em torneamento com alta velocidade em superligas à base de níquel (Inconel 718 e Waspaloy). Os materiais foram tratados termicamente para dureza de 44 e 40 HRC respectivamente, e usinados sob condição de corte a seco e com utilização da técnica de mínima quantidade de lubrificante (minimal quantity lubricant - MQL) visando atender requisitos ambientais. As superligas à base de níquel são conhecidas como materiais de difícil usinabilidade devido à alta dureza, alta resistência mecânica em alta temperatura, afinidade para reagir com materiais da ferramenta e baixa condutividade térmica. A usinagem de superligas afeta negativamente a integridade da peça. Por essa razão, cuidados especiais devem ser tomados para assegurar a vida da ferramenta e a integridade superficial de componentes usinados por intermédio de controle dos principais parâmetros de usinagem. Experimentos foram realizados sob diversas condições de corte e geometrias de ferramentas para avaliação dos parâmetros: força de corte, temperatura, emissão acústica e integridade superficial (rugosidade superficial, tensão residual, microdureza e microestrutura) e mecanismos de desgaste. Mediante os resultados apresentados, recomenda-se à geometria de melhor desempenho nos parâmetros citados e confirma-se a eficiência da técnica MQL. Dentre as ferramentas e geometrias testadas, a que apresentou melhor desempenho foi a ferramenta cerâmica CC650 seguida da ferramenta cerâmica CC670 ambas com formato redondo e geometria 2 (chanfro em T de 0,15 x 15º com raio de aresta de 0,03 mm).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.