875 resultados para Machine Learning Robotics Artificial Intelligence Bayesian Networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.

Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.

Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.

Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Requirement engineering is a key issue in the development of a software project. Like any other development activity it is not without risks. This work is about the empirical study of risks of requirements by applying machine learning techniques, specifically Bayesian networks classifiers. We have defined several models to predict the risk level for a given requirement using three dataset that collect metrics taken from the requirement specifications of different projects. The classification accuracy of the Bayesian models obtained is evaluated and compared using several classification performance measures. The results of the experiments show that the Bayesians networks allow obtaining valid predictors. Specifically, a tree augmented network structure shows a competitive experimental performance in all datasets. Besides, the relations established between the variables collected to determine the level of risk in a requirement, match with those set by requirement engineers. We show that Bayesian networks are valid tools for the automation of risks assessment in requirement engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developers strive to create innovative Artificial Intelligence (AI) behaviour in their games as a key selling point. Machine Learning is an area of AI that looks at how applications and agents can be programmed to learn their own behaviour without the need to manually design and implement each aspect of it. Machine learning methods have been utilised infrequently within games and are usually trained to learn offline before the game is released to the players. In order to investigate new ways AI could be applied innovatively to games it is wise to explore how machine learning methods could be utilised in real-time as the game is played, so as to allow AI agents to learn directly from the player or their environment. Two machine learning methods were implemented into a simple 2D Fighter test game to allow the agents to fully showcase their learned behaviour as the game is played. The methods chosen were: Q-Learning and an NGram based system. It was found that N-Grams and QLearning could significantly benefit game developers as they facilitate fast, realistic learning at run-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work in progress study was to test the concept of recognising plants using images acquired by image sensors in a controlled noise-free environment. The presence of vegetation on railway trackbeds and embankments presents potential problems. Woody plants (e.g. Scots pine, Norway spruce and birch) often establish themselves on railway trackbeds. This may cause problems because legal herbicides are not effective in controlling them; this is particularly the case for conifers. Thus, if maintenance administrators knew the spatial position of plants along the railway system, it may be feasible to mechanically harvest them. Primary data were collected outdoors comprising around 700 leaves and conifer seedlings from 11 species. These were then photographed in a laboratory environment. In order to classify the species in the acquired image set, a machine learning approach known as Bag-of-Features (BoF) was chosen. Irrespective of the chosen type of feature extraction and classifier, the ability to classify a previously unseen plant correctly was greater than 85%. The maintenance planning of vegetation control could be improved if plants were recognised and localised. It may be feasible to mechanically harvest them (in particular, woody plants). In addition, listed endangered species growing on the trackbeds can be avoided. Both cases are likely to reduce the amount of herbicides, which often is in the interest of public opinion. Bearing in mind that natural objects like plants are often more heterogeneous within their own class rather than outside it, the results do indeed present a stable classification performance, which is a sound prerequisite in order to later take the next step to include a natural background. Where relevant, species can also be listed under the Endangered Species Act.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical and omics data are a promising field of application for machine learning techniques even though these methods are not yet systematically adopted in healthcare institutions. Despite artificial intelligence has proved successful in terms of prediction of pathologies or identification of their causes, the systematic adoption of these techniques still presents challenging issues due to the peculiarities of the analysed data. The aim of this thesis is to apply machine learning algorithms to both clinical and omics data sets in order to predict a patient's state of health and get better insights on the possible causes of the analysed diseases. In doing so, many of the arising issues when working with medical data will be discussed while possible solutions will be proposed to make machine learning provide feasible results and possibly become an effective and reliable support tool for healthcare systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematological cancers are a heterogeneous family of diseases that can be divided into leukemias, lymphomas, and myelomas, often called “liquid tumors”. Since they cannot be surgically removable, chemotherapy represents the mainstay of their treatment. However, it still faces several challenges like drug resistance and low response rate, and the need for new anticancer agents is compelling. The drug discovery process is long-term, costly, and prone to high failure rates. With the rapid expansion of biological and chemical "big data", some computational techniques such as machine learning tools have been increasingly employed to speed up and economize the whole process. Machine learning algorithms can create complex models with the aim to determine the biological activity of compounds against several targets, based on their chemical properties. These models are defined as multi-target Quantitative Structure-Activity Relationship (mt-QSAR) and can be used to virtually screen small and large chemical libraries for the identification of new molecules with anticancer activity. The aim of my Ph.D. project was to employ machine learning techniques to build an mt-QSAR classification model for the prediction of cytotoxic drugs simultaneously active against 43 hematological cancer cell lines. For this purpose, first, I constructed a large and diversified dataset of molecules extracted from the ChEMBL database. Then, I compared the performance of different ML classification algorithms, until Random Forest was identified as the one returning the best predictions. Finally, I used different approaches to maximize the performance of the model, which achieved an accuracy of 88% by correctly classifying 93% of inactive molecules and 72% of active molecules in a validation set. This model was further applied to the virtual screening of a small dataset of molecules tested in our laboratory, where it showed 100% accuracy in correctly classifying all molecules. This result is confirmed by our previous in vitro experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we investigate the role of applied physics in epidemiological surveillance through the application of mathematical models, network science and machine learning. The spread of a communicable disease depends on many biological, social, and health factors. The large masses of data available make it possible, on the one hand, to monitor the evolution and spread of pathogenic organisms; on the other hand, to study the behavior of people, their opinions and habits. Presented here are three lines of research in which an attempt was made to solve real epidemiological problems through data analysis and the use of statistical and mathematical models. In Chapter 1, we applied language-inspired Deep Learning models to transform influenza protein sequences into vectors encoding their information content. We then attempted to reconstruct the antigenic properties of different viral strains using regression models and to identify the mutations responsible for vaccine escape. In Chapter 2, we constructed a compartmental model to describe the spread of a bacterium within a hospital ward. The model was informed and validated on time series of clinical measurements, and a sensitivity analysis was used to assess the impact of different control measures. Finally (Chapter 3) we reconstructed the network of retweets among COVID-19 themed Twitter users in the early months of the SARS-CoV-2 pandemic. By means of community detection algorithms and centrality measures, we characterized users’ attention shifts in the network, showing that scientific communities, initially the most retweeted, lost influence over time to national political communities. In the Conclusion, we highlighted the importance of the work done in light of the main contemporary challenges for epidemiological surveillance. In particular, we present reflections on the importance of nowcasting and forecasting, the relationship between data and scientific research, and the need to unite the different scales of epidemiological surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid progression of biomedical research coupled with the explosion of scientific literature has generated an exigent need for efficient and reliable systems of knowledge extraction. This dissertation contends with this challenge through a concentrated investigation of digital health, Artificial Intelligence, and specifically Machine Learning and Natural Language Processing's (NLP) potential to expedite systematic literature reviews and refine the knowledge extraction process. The surge of COVID-19 complicated the efforts of scientists, policymakers, and medical professionals in identifying pertinent articles and assessing their scientific validity. This thesis presents a substantial solution in the form of the COKE Project, an initiative that interlaces machine reading with the rigorous protocols of Evidence-Based Medicine to streamline knowledge extraction. In the framework of the COKE (“COVID-19 Knowledge Extraction framework for next-generation discovery science”) Project, this thesis aims to underscore the capacity of machine reading to create knowledge graphs from scientific texts. The project is remarkable for its innovative use of NLP techniques such as a BERT + bi-LSTM language model. This combination is employed to detect and categorize elements within medical abstracts, thereby enhancing the systematic literature review process. The COKE project's outcomes show that NLP, when used in a judiciously structured manner, can significantly reduce the time and effort required to produce medical guidelines. These findings are particularly salient during times of medical emergency, like the COVID-19 pandemic, when quick and accurate research results are critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Day by day, machine learning is changing our lives in ways we could not have imagined just 5 years ago. ML expertise is more and more requested and needed, though just a limited number of ML engineers are available on the job market, and their knowledge is always limited by an inherent characteristic of theirs: they are humans. This thesis explores the possibilities offered by meta-learning, a new field in ML that takes learning a level higher: models are trained on other models' training data, starting from features of the dataset they were trained on, inference times, obtained performances, to try to understand the relationship between a good model and the way it was obtained. The so-called metamodel was trained on data collected by OpenML, the largest ML metadata platform that's publicly available today. Datasets were analyzed to obtain meta-features that describe them, which were then tied to model performances in a regression task. The obtained metamodel predicts the expected performances of a given model type (e.g., a random forest) on a given ML task (e.g., classification on the UCI census dataset). This research was then integrated into a custom-made AutoML framework, to show how meta-learning is not an end in itself, but it can be used to further progress our ML research. Encoding ML engineering expertise in a model allows better, faster, and more impactful ML applications across the whole world, while reducing the cost that is inevitably tied to human engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il machine learning negli ultimi anni ha acquisito una crescente popolarità nell’ambito della ricerca scientifica e delle sue applicazioni. Lo scopo di questa tesi è stato quello di studiare il machine learning nei suoi aspetti generali e applicarlo a problemi di computer vision. La tesi ha affrontato le difficoltà del dover spiegare dal punto di vista teorico gli algoritmi alla base delle reti neurali convoluzionali e ha successivamente trattato due problemi concreti di riconoscimento immagini: il dataset MNIST (immagini di cifre scritte a mano) e un dataset che sarà chiamato ”MELANOMA dataset” (immagini di melanomi e nevi sani). Utilizzando le tecniche spiegate nella sezione teorica si sono riusciti ad ottenere risultati soddifacenti per entrambi i dataset ottenendo una precisione del 98% per il MNIST e del 76.8% per il MELANOMA dataset