861 resultados para Mach-Zehnder interferometers
Resumo:
We propose an in-fiber Mach-Zehnder interferometer formed by a pair of largely tilted fiber gratings. The interference spectral characteristics have been investigated. The experimental results using this device as a chemical sensor have a sensitivity as high as 719nm/RIU. © 2012 OSA.
Resumo:
本文提出的微伽绝对重力仪基于高精度、高稳定的差动干涉仪。详细研究了重力仪的距离测量技术,自由落体运动的距离测量实验表明,本文提出的高精度差动干涉仪可以满足相对不确定度达6.4×10^(-9)的微伽绝对重力仪要求。而且,差动干涉仪比目前广泛应用于绝对重力仪的Mach-Zehnder干涉仪更稳定。
Resumo:
Micro-photonic SOI Mach-Zehnder interferometers were coated with solid-phase micro-extraction materials derived from polydimethylsiloxane to enable sensing of volatile organic compounds of the BTEX class in air. A different coating based on functionalized mesoporous silicates is used to detect lead Pb(II) with a detection limit of <;; 100 ppb in water.
A new double laser pulse pumping scheme for transient collisionally excited plasma soft X-ray lasers
Resumo:
Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn
Resumo:
A thermo-optic Mach-Zehnder (MZ) variable optical attenuator based on silicon waveguides with a large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. Multimode interferometers were used as power splitters and combiners in the MZ structure. In order to achieve a smooth interface, anisotropic chemical etching of silicon was used to fabricate the waveguides. Isolating grooves were introduced to reduce power consumption and device length. The device has a low power consumption of 210 mW and a response time of 50 mus. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A 2 x 2 thermo-optic (TO) Mach-Zehnder (MZ) switch based on silicon waveguides with large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. The multi-mode interferometers (MMI) were used as power splitter and combiner in MZ structure. In order to get smooth interface, anisotropy chemical wet-etching of silicon was used to fabricate the waveguides instead of dry-etching. Additional grooves were introduced to reduce power consumption. The device has a low switching power of 235 mW and a switching speed of 60 mus. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A 4 x 4 strictly nonblocking thermo-optical switch matrix based on Mach-Zehnder (MZ) switching unit was designed and fabricated in silicon-on-insulator (SOI) wafer. The paired multi-mode interferometers (MMI) were used as power splitters and combiners in MZ structures. The device presents an average insertion loss of 17 dB and an average crosstalk of 16.5 dB. The power consumption needed for operation is reduced to 0.288 W by adding isolating trenches. The switching time of the device is about 15 mu s, which is much faster than that of silica-based switches. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A thermo-optical waveguide switch matrix is designed and fabricated on silicon-on-insulator wafer. Multi-mode interferometers are used as power splitters and combiners in a Mach-Zehnder structure. Inductively coupled plasma reactive ion etching is used to fabricate the waveguides. The rise and fall times of the switch matrix are 13 mu s and 7 mu s, respectively. Switch cells have an average switching power consumption of 340 mW.
Resumo:
Mach-Zehnder and Michelson interferometers using core-offset attenuators were demonstrated. As the relative offset direction of the two attenuators in the Mach-Zehnder interferometer can significantly affect the extinction ratio of the interference pattern, single core-offset attenuator-based sensors appear more robust and repeatable. A novel fiber Michelson interferometer refractive index (RI) sensor was subsequently realized by a single core-offset attenuator and a layer of ~ 500-nm gold coating. The device had a minimum insertion loss of 0.01 dB and maximum extinction ratio over 9 dB. The sensitivity (0.333 nm) of the new sensor to its surrounding RI change (0.01) was found to be comparable to that (0.252 nm) of an identical long period gratings pair Mach-Zehnder interferometric sensor, and its ease of fabrication makes it a low-cost alternative to existing sensing applications.
Resumo:
When the electro-optic and acousto-optic effects are combined into a single device, the resulting acousto-electro-optic (AEO) modulator shows improved flexibility to overcome some limitations of the individual modulators or their cascade combinations. By using optical interferometry, it is possible to investigate the AEO modulator behavior as a function of this applied voltage. By this way, a lithium niobate AEO modulator is positioned in one of the arms of a Mach-Zehnder interferometer and operates at 62 MHz frequency, which constitutes the intermediate frequency of the heterodyne interferometer. Operating the AEO modulator in the acousto-optic small diffraction efficiency regime, the photodetected signal amplitude and phase are analyzed, and the induced phase shift, transmission curve and linearity response are obtained. The experimental results show good agreement with that expected from the coupled-mode theory. The possibility of linear control of the optical phase shift by the external voltage, from 0 to 2 p radians, is demonstrated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched f ilter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of ~0.05 µe/vHz at 20 Hz, while the interferometric phase resolution is better than 1 mrad/vHz at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.
Resumo:
We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched f ilter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of ~0.05 µe/vHz at 20 Hz, while the interferometric phase resolution is better than 1 mrad/vHz at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.
Resumo:
New experimental results to demonstrate that the annoying DC in the reconstructed wavefronts from in-line holograms could be successfully eliminated are presented in this paper. The complete elimination of DC has been achieved by making proper use of a Mach-Zehnder interferometer. The results for an in-line hololens and an in-line Fourier transform hologram are discussed.
Resumo:
New experimental results to demonstrate that the annoying DC in the reconstructed wavefronts from in-line holograms could be successfully eliminated are presented in this paper. The complete elimination of DC has been achieved by making proper use of a Mach-Zehnder interferometer. The results for an in-line hololens and an in-line Fourier transform hologram are discussed.