988 resultados para MYCELIAL GROWTH
Resumo:
Fish hydrolyzed (HP), poultry manure (CF), shrimp skin (CC), cattle manure (EB), sewage sludge (LE) and castorbean presscake (TM) were evaluated for their effect of aqueous extracts with and without autoclaving, on mycelial growth and conidial germination of Cylindrocladium spathiphylli. The effect of mixtures of residues with potting mixes and their volatile compounds were also evaluated on the mycelial growth of the pathogen. To evaluate the effect of HP in the suppressiveness to Cylindrocladium spathiphylli, HP was added in potting mix artificially infested, at concentrations of 0, 10, 20, 30, 40 and 50% of the volume of water required to reach the water retention capacity of the potting mix. The mixtures were incubated for 10 days and transferred to pots containing one plug of Spathiphyllum Opal per pot. In the experiments in vitro, aqueous extracts and mixtures containing HP showed the highest suppressiveness against the pathogen. In the Spathiphyllum growing, the suppressiveness occurred at concentrations higher than 20% of fish hidrolyzed.
Resumo:
Coniothyrium minitans (CM) is hyperparasitic to Sclerotinia sclerotiorum (SS), a pathogen of many economically important crops. In this paper, we describe the isolation of improved mutants of CM, using a UV - irradiation regime, with altered chitinase production and tolerance to high concentration of iprodione, which are effective against SS. Three out of the 59 mutants obtained inhibited the mycelial growth of CM. Infectivity of sclerotia by the new mutants was assayed by the plant-tissue-based system using carrot segments. More than 80% of sclerotia were colonized by the mutants and the wild-type CM. The mutant strains retained ability to produce significant amounts of chitinase. The mutants differed from their wild-type strain in appearance, morphology and sporulation. In conclusion, the results presented here provide evidence that the new biotypes of C. minitans are effective in controlling S. sclerotiorum.
Resumo:
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72h by varying the polymer concentration from 0.5 to 16g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). © 2012 Elsevier GmbH.
Resumo:
Environmental problems caused by synthetic fungicides have increased the search for alternative methods of control of plant diseases. The objective was to evaluate the effect of essential oil of citronella grass, on the fungus Rhizoctonia solani, in different methods of in vitro fungitoxicity. We used a randomized design in a factorial design with four replications, where the factors were composed of four methods for assessing the in vitro fungitoxicity of the essential oil of citronella grass (essential oil diluted in Tween 80 (0.5%) and embedded in the culture medium PDA (potato dextrose agar) still melting, essential oil diluted in Tween 80 (0.5%) and distributed on the surface of the PDA; oil essential diluted in Tween 80 (0.5%) and distributed on filter paper attached to the inner surface of the lid of the Petri dish, pure essential oil and distributed on the surface of the culture medium, and control) and five evaluation periods (2, 4, 6, 8 and 10 days of incubation). Was used 0.25μL mL-1 of citronella oil in all treatments. Of the treatments evaluated the use of pure oil distributed on the surface of the culture medium was more effective in reducing the mycelial diameter in all evaluations. In this method the rate of mycelial growth was 9,02 mm day-1, reaching in last evaluation 79,77 mm.
Resumo:
Citrus fruits are affected by diverse diseases, mainly the fungal infections, which affect productivity and quality, especially when it targets the market of fresh fruit. Among the fungal diseases that occur in postharvest, there is the green mold caused by Penicillium digitatum. The control measures are based mainly in the treatment of fruits with different combinations of fungicides in packing-house. Due to restrictions on the presence of residues of fungicides in citrus fruits and the increasing development of resistant strains of pathogens to the fungicide used, it is necessary to search for control alternatives such as biological control. Therefore, this study aimed to: (i) verify the antagonistic effect of biological control agents (BCA), being 13 isolates of Bacillus subtilis and 06 isolates of Saccharomyces cerevisiae against P. digitatum, (ii) study in vitro interactions between pathogen and BCA (iii) determine the effect of integration of antagonists with sodium bicarbonate and carnauba wax in the control of green mold. The results showed that the majority of the isolates, and all yeast isolates inhibited the mycelial growth of the phytopathogen. Only one isolate of B. subtilis (ACB-84) was able to inhibit the germination of P. digitatum (72% of inhibition), whereas ACB-K1 and ACB-CR1 (S. cerevisiae) were the most effective with inhibition from 78 and 85.7% respectively. The addition of sucrose (0.5%) favored the inhibition of conidia germination by the yeast isolates. The results from the in vivo control showed the viability of S. cerevisiae ACB-K1 and ACB-CR1 to control P. digitatum in 'Tahiti' lime fruits and orange 'Hamlin' fruits, respectively. The combination of sodium bicarbonate and biocontrol agents did not result in improvements in the curative control of the green mold. Carnauba wax (18% of TSS) favored the antagonistic activity of S. cerevisiae, and this effect depended on the variety of fruits in the study and of the yeast isolate used for the biocontrol.
Resumo:
The application of fungicides in the aerial organs is control strategy to macrospora spot caused by fungus Stenocarpella macrospora. The objective of this study was to determine the sensitivity of S. macrospora to fungicides by inhibition of mycelial growth (MG) and conidial germination (CG). It was eval uated 12 fungicides belonging to the chemical groups of the benzimidazoles, triazoles and strobilurins, six concentrations and two isolates of the fungus (SC and MT). The fungicides were diluted in sterile distilled water and added to the culture medium of potato dextrose agar (mycelium) and water-agar (spore) after sterilization. The percentage of inhibition of MC and CG was calculed in comparison with control, estimating of 50% inhibitory concentration (IC50). The fungicides tested were effective in inhibiting the MC. The IC50 was less than 1 ppm for all fungicides. There was no difference between isolates. The inhibition of CG had higher fungitoxicity strobilurins, and the IC50 was between 0.0035 and 0.03 ppm, and the isolated SC showed the higher sensitivity to the fungicides. The IC50 values obtained for fungicides and specific S. macrospora will be useful in monitoring the sensitivity of the fungus, especially in regions with intense demand for fungicides in corn.
Fusarium solani f. sp. passiflorae: A new forma specialis causing collar rot in yellow passion fruit
Resumo:
The aim of this study was to characterize a Fusarium population obtained from yellow passion fruit (YPF) with collar rot using pathogenicity, morphocultural characteristics and molecular tests. Pathogenicity and disease severity were assessed in six plant species: YPF, zucchini, tomato, bean, soya bean and cucumber. Potato dextrose agar medium (PDA) was used to determine mycelial growth at five temperatures (15-35°C). The colour produced by isolates was also determined on PDA at 25°C. Synthetic nutrient agar medium was used to evaluate: (i) type of mycelium and phialides; (ii) size, shape and number of septa from conidia; and (iii) production of chlamydospores and perithecia. Molecular tests consisted of sequencing the ITS-5·8S rDNA region and elongation factor 1α (EF-1α) gene. The isolates caused large lesions on YPF, zucchini and tomato, with YPF having the highest mean disease severity and being the only one that showed wilt symptoms and death of the plant. Thus the isolates showed host specificity. Maximum mycelial growth occurred at 25°C and the predominant colour was bluish-white. The isolates produced long phialides, dense aerial mycelium, oval microconidia with a mean size of 9·5 × 2·6 μm, macroconidia of 32·7 × 3·4 μm with 3·3 septa, and chlamydospores; only one isolate lacked perithecia. Phylogenetic trees of the ITS region and EF-1α gene showed that isolates from YPF formed a distinct group within the F. solani group and the formae speciales of F. solani. It is proposed to name all isolates from YPF as F. solani f. sp. passiflorae. © 2013 British Society for Plant Pathology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV