179 resultados para MSE
Resumo:
p.21-30
Resumo:
p.21-30
Resumo:
A method for selecting the order in which the users are detected in communication systems employing adaptive successive decision feedback multiuser detection is proposed. Systems employing channel coding without the assumption of perfect decision feedback are analyzed. The method is based on the mean squared error (MSE) measurements during a training period for each user. The analysis' shows that the method delivers BER performance improvement relative to other previously proposed ordering methods
Resumo:
Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.
Resumo:
The in-line measurement of COD and NH4-N in the WWTP inflow is crucial for the timely monitoring of biological wastewater treatment processes and for the development of advanced control strategies for optimized WWTP operation. As a direct measurement of COD and NH4-N requires expensive and high maintenance in-line probes or analyzers, an approach estimating COD and NH4-N based on standard and spectroscopic in-line inflow measurement systems using Machine Learning Techniques is presented in this paper. The results show that COD estimation using Radom Forest Regression with a normalized MSE of 0.3, which is sufficiently accurate for practical applications, can be achieved using only standard in-line measurements. In the case of NH4-N, a good estimation using Partial Least Squares Regression with a normalized MSE of 0.16 is only possible based on a combination of standard and spectroscopic in-line measurements. Furthermore, the comparison of regression and classification methods shows that both methods perform equally well in most cases.
Resumo:
In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.
Resumo:
We study multicarrier multiuser multiple-input multiple-output (MU-MIMO) systems, in which the base station employs an asymptotically large number of antennas. We analyze a fully correlated channel matrix and provide a beam domain channel model, where the channel gains are independent of sub-carriers. For this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate, based on which, we develop asymptotically necessary and sufficient conditions for optimal downlink transmission that require only statistical channel state information at the transmitter. Furthermore, we propose a beam division multiple access (BDMA) transmission scheme that simultaneously serves multiple users via different beams. By selecting users within non-overlapping beams, the MU-MIMO channels can be equivalently decomposed into multiple single-user MIMO channels; this scheme significantly reduces the overhead of channel estimation, as well as, the processing complexity at transceivers. For BDMA transmission, we work out an optimal pilot design criterion to minimize the mean square error (MSE) and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. Simulations demonstrate the near-optimal performance of BDMA transmission and the advantages of the proposed pilot sequences.
Resumo:
The Malaysian palm oil industry is well known for the social, environmental and sustainability challenges associated with its rapid growth over the past ten years. Technologies exist to reduce the conflict between national development aims of economic uplift for the rural poor, on the one hand, and ecological conservation, on the other hand, by raising yields and incomes from areas already under cultivation. But the uptake of these technologies has been slow, particularly in the smallholder sector. In this paper we explore the societal and institutional challenges that influence the investment and innovation decisions of micro and small enterprise (MSE) palm oil smallholders in Sabah, Malaysia. Based on interviews with 38 smallholders, we identify a number of factors that reduce the smallholders' propensity to invest in more sustainable practices. We discuss why more effective practices and innovations are not being adopted using the concepts of, firstly, institutional logics to explore the internal dynamics of smallholder production systems, including attitudes to sustainability and innovation; and, secondly, institutional context to explore the pressures the smallholders face, including problems of access to land, labour, capital, knowledge and technical resources. These factors include limited access to global market information, corruption and uncertainties of legal title, weak economic status and social exclusion. In discussing these factors we seek to contribute to wider theoretical debates about the factors that block innovation and investment in business improvements in marginal regions and in marginalised groups.
Resumo:
Dissertação de Natureza Científica elabora da no âmbito do protocolo de cooperação entre o ISEL e o LNEC para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Acquis le 28 janvier 1843 de Benjamin Duprat, libraire, suite à la vente Saibante pour le prix de 900 francs; cf. B.n.F., département des Manuscrits, registre des acquisitions 1833-1848, n° 3163; — note "Questo codice è assai diffusamente descritto ed illustrato in una epistola di Lucio Doglioni al P. Paolo Canciani, la quale trovasi nel tomo secondo pag. 461 dell' opera: Canciani Barbarorum leges antiquae. Apparteneva al convento di Sa. Eufemia di Verona, indi passo nella Bibltioteca del Mse Gianfilippi" (f. de garde); — Pierre Pithou; cf. B.n.F., département des Manuscrits, nouv. acq. fr. 5527, f. 109
Resumo:
Autism is a developmental disorder that is characterized by abnonnal social interactions and communications as well as repetitive and restricted activities and interests. There is evidence of a genetic component, as 5% of younger siblings are diagnosed if their older sibling has been diagnosed. Autism is generally not diagnosed until age 3 at the earliest, yet it has been shown that early intervention for children with autism can greatly increase their functioning. Because of this, it is important that symptoms of autism are identified as early as possible so that diagnosis can occur as soon as possible to allow these children the earliest intervention. This thesis was divided into two parts. The first looked at the psychometrics of two proposed measures, the Parent Observation Checklist (POC), administered monthly, and the Infant Behavior Summary Evaluation (mSE), administered bimonthly, to see if they can be used with the infant population to identify autistic symptoms in infants who are at high risk for autism or related problems because they have an older sibling with autism. Study 1 reported acceptable psychometric properties of both the POC and IBSE in terms of test-retest reliability, internal consistency, construct validity and predictive validity. These results provide preliminary evidence that parent report measures can help to detect early symptoms of ASD in infants. The POC was shown to differentiate infants who were diagnosed from a matched group that was not diagnosed by 3 years of age. The second part of this thesis involved a telephone interview of parents who reported developmental and/or behavior problems in their high-risk infants that may be early signs of Autism Spectrum Disorder (ASD). During the interview, a service questionnaire was administered to see what interventions (including strategies recommended by the researchers) their at risk infants and affected older siblings were receiving, how satisfied the parents were with them and how effective they felt the interventions were. 3 Study 2 also yielded promising results. Parents utilized a variety of services for at risk infants and children with ASD. The interventions included empirically validated early intervention (e.g., ABA) to non-empirically validated treatments (e.g., diet therapy). The large number of nonempirically validated treatments parents used was surprising, yet parents reported being involved and satisfied, and thought that the services were effective. Parents' perceptions of their stress levels went down slightly and feelings of competence rose when they accessed services for their infants. Overall, the results of this thesis provide new evidence that parent-report methods hold promise as early detection instruments for ASD in at-risk infants. More research is needed to further validate these instruments as well as to understand the variables related to the parents' choice of early intervention for their at risk and affected children.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
The attached file is created with Scientific Workplace Latex