980 resultados para MODIFIED ELECTRODES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Twelve mediators have been modified by adsorption onto the paraffin impregnated graphite electrodes (IGE). The resulting electrodes exhibit electrocatalytic activity of different degrees towards oxidation of 1,4-dihydronicotinamide adenine dinucleotide (NADH). The electrocatalytic ability of the chemically modified electrode (CME) depends mainly on the formal potential and molecular structure of mediator. The formation of the charge transfer complex between NADH and adsorbed mediator has been demonstrated by the experiments using a rotating disk electrode. An electrocatalytic scheme obeying Michaelis-Menten kinetics has been confirmed, and some kinetic parameters were estimated. The solution pH influences markedly the electrocatalytic activity of the modified electrode. Various possible reasons are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel modified electrode dispersed with ultrafine platinum particles on the surface of a 30-mu m carbon fibre microelectrode was investigated as an amperometric detector in capillary zone electrophoresis (CEEC) for determining hydrazines. The unique cha

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The strong chelating ability of mercaptoacetic acid for certain metal ions is exploited for a new; kind of voltammetric sensor. Specifically, a glassy carbon electrode (GCE) surface was covalently covered br; mercaptoacetic acid. The preparation of mercap

Relevância:

70.00% 70.00%

Publicador:

Resumo:

G chemically modified electrode (CME) was prepared by electrochemical copolymerization of pyrrole and Methylene Blue. The resulting CME exhibits effective electrocatalytic activity towards the oxidation of reduced nicotinamide coenzymes (NADH and NADPH),

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemically modified electrodes (CMEs) prepared by the dispersion of metal oxide particles on a glassy carbon (GC) substrate greatly enhance the voltammetric response and amperometric detection of local anesthetics following liquid chromatography (LC). The enhancement is more pronounced with the GC electrodes dispersed by the metal oxides of higher oxidation states (+3, +4) and for the species exhibiting relatively slow electrode kinetics under given conditions. With an applied potential of 1.2 V (vs. SCE), LC amperometric detection of the analytes at the alpha-alumina modified GC surface gives detection limits 2-5 times lower than those obtained at the bare electrode. The metal oxide-dispersed electrodes display significant improvement in sensitivity, and selectivity and indicate excellent preparation reproducibility and performance stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

General equations of the electrocatalytic reaction at an ultramicroelectrode modified with redox species have been described according to the Andrieux Saveant model. The electrocatalytic kinetic process has been discussed for the whole set of cases, ie (R), (R + S), (SR) (SR + E), (E), (R + E), (ER), (S), (ER + S) and (S + E) limiting situations. The effect of gamma on the catalytic steady state current shows that the higher the value of gamma, the lower the catalytic current. The kinetic process shifts rapidly from R to E with increasing values of gamma. It is favorable for catalysis only when gamma is very low. Therefore, the redox species modified ultramicroelectrode with thin film is utilized for electrocatalysis, and the larger the radius of ultramicroelectrode, the higher the catalytic efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper the electrochemical properties of isopolymolybdic anion thin film modified carbon fibre (CF) microelectrode prepared by simple dip coating have been described. The modified electrode shows three couples of surface redox waves between + 0.70 and - 0.1 V vs. sce in 2 M H2SO4 solution with good stability and reversibility. The pH of solution has a marked effect on the electrochemical behaviour and stability of the film, the stronger the acidity of electrolyte solution is, the better the stability and reversibility of isopolymolybdic anion film CF microelectrode will be. The scanning potential range strongly influences on the electrochemical behaviour of the film. The isopolymolybdic anion film prepared by the dip coating resulting a monolayer with estimated surface concentration (F) 2.8 x 10(-11) mol cm-2. From the half-peak widths and peak areas of the surface redox waves of the film electrode, the first three surface waves are corresponding to two-electron processes. The electron energy spectra show the products by six electrons reduction are a mixture of Mo(VI) and Mo(V) species. The electrochemical reaction of the isopolymolybdic anion monolayer can be expressed as Mo8O264- + mH+ + 2ne half arrow right over half arrow left [HmMo8-2n(VI)Mo2n(V)O26](4,2n-m)-n = 1, 2, 3; m = 2, 5, 7.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel Prussian blue chemically modified electrode (CME) was constructed and characterized for liquid chromatography electrochemical detection (LCEC) of catecholamines. Both anodic and cathodic peaks could be obtained by monitoring at constant applied potential at anodic and slightly cathodic potential ranges (0.3-0.7 and -0.2-0.1 V vs. SCE), respectively. When arranged in a series configuration, using the modified electrodes as generating and collecting detectors, extremely high effective collection efficiencies of 0.91 (for norepinephrine) and 0.58 (for dihydroxyphenylacetic acid) were achieved in dual-electrode LCEC for catecholamines; and a linear response range over 3 orders of magnitude and a detection limit of 10 pg were obtained with a downstream CME as the indicating detector.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Prussian Blue-modified glassy carbon electrode prepared by simple adsorption exhibited excellent electrocatalytic activity in the oxidation of hydrazine in acidic media. A film of the perfluorosulphonic acid polymer Nafion coated on top of the Prussian Blue-modified glassy carbon electrode can improve the mechanical stability of the Prussian Blue layer in the flow stream. Hydrazine was detected by flow-injection analysis at the modified electrode with high sensitivity. The limit of detection was 0.6 ng.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper the preparation of isopoly- and heteropolyoxometallates (IPA and HPA) thin film modified carbon fiber (CF) microelectrodes and the factor that influences the modification of IPA and HPA films are described. IPA and HPA film modified CF microelectrodes can all be prepared by cyclic potential scan and simple dip coating. The modified electrodes prepared are very stable and reversible in acidic solution with monolayer characteristics. The electrochemical pretreatment of CF microelectrodes plays an important role in the modification of IPA and HPA film. The absorption of IPA and HPA film on electrode surfaces has been discussed on the basis of surface conditions of the CF microelectrode and the structure of IPA and HPA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemically modified electrodes prepared by adsorbing prussian blue on a glassy carbon electrode are shown to catalyse the electro-oxidation of cysteine, N-acetylcysteine and glutathione in acidic media. The catalytic response is evaluated with respect to the potential scan rate, the solution pH, the concentration dependence, and other variables. Covering the electrode with Nafion(R) film improved the stability and reproducibility in liquid chromatography with electrochemical detection to the extent that repetitive sample injections produced relative standard deviations of less than 5% over several hours of operation. The limit of detection was 4 pmol for cysteine, 33 pmol for glutathione and 61 pmol for N-acetylcysteine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Voltammetric methods are applicable for the determination of a wide variety of both organic and inorganic species. Its features are compact equipment, simple sample preparation, short analysis time, high accuracy and sensitivity. Voltammetry is especially suitable for laboratories in which only a few parameters have to be monitored with a moderate sample throughput. Of various electrode materials, glassy carbon electrode is particularly useful because of its high electrical conductivity, impermeability to gases, high chemical resistance, reasonable mechanical and dimensional stability and widest potential range of all carbonaceous electrodes. Electrode modification is a vigorous research area by which the electrochemical determination of various analyte species is facilitated. The scope of pharmaceutical analysis includes the analytical investigation of pure drug, drug formulations, impurities and degradation products of drugs, biological samples containing the drugs and their metabolites with the aim of obtaining data that can contribute to the maximal efficacy and maximal safety of drug therapy. This thesis presents the modification of glassy carbon electrode using metalloporphyrin and dyes and subsequently using these modified electrodes for the determination of various pharmaceuticals. The thesis consists of 9 chapters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quartz crystal microbalance (QCM) measurements of the formation of a 4-aminothiophenol (4-ATP)self-assembled monolayer (SAM) at a gold electrode showed that a surface coverage of 118 ng cm(-2) was obtained after a 3 h exposure period, indicating that good surface coverage was achieved. Cyclic voltammetry of the ferricyanide redox couple across this SAM modified surface produced similar results to those of a bare electrode; however, the electroreduction of oxygen was found to be impaired. The 4-ATP SAM layer was not stable to repeated electrochemical oxidation and reduction; it is believed that the 4-ATP SAM layer was first converted to a 4'-mercapto-N-phenylquinone diimine (NPQD) layer followed by subsequent formation of a 4'-mercapto-N-phenylquinone monoimine (NPQM) layer. We also report a quartz crystal microbalance study of the attachment of platinum nanoparticles to such SAM modified electrodes. We show that five times the amount of platinum nanoparticles can be attached to a 4-ATP modified electrode surface (observed frequency change - 187 Hz) compared with an NPQD modified electrode surface (observed frequency change -35 Hz). The presence of the platinum particles was confirmed electrochemically by their surface electrochemical properties, which were different from those of the underlying gold electrode. It is believed that this is the first time that such direct evidence of electrochemical communication between platinum nanoparticles and a SAM modified electrode surface has been obtained. It was also shown to be possible to build up multilayer SAM/nanoparticle modified surfaces while maintaining efficient electrochemical communication. Up to three SAM/nanoparticle sandwich layers were constructed.