970 resultados para MIGRAINE WITH AURA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether three relevant polymorphisms (C-1562T, microsatellite - 90(CA)(14-24), and Q279R) in the MMP-9 gene, or MMP-9 haplotypes, are associated with migraine and affect MMP-9 and tissue inhibitor of MMPs (TIMP)-1 levels in patients with migraine. We studied 102 healthy women (controls) and 187 women with migraine (141 without aura - MWA, and 46 with aura - MA). Patients with MWA had higher plasma MMP-9 concentrations than patients with MA. Patients with MA had the highest TIMP-1 and lowest MMP-9/TIMP-1 ratios. The MMP-9 "C L Q" haplotype was associated with higher plasma MMP-9 concentrations in migraine patients. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common neurological disorder characterised by temporary disabling attacks of severe head pain and associated disturbances. There is significant evidence to suggest a genetic aetiology to the disease however few causal mutations have been conclusively linked to the migraine subtypes Migraine with (MA) or without Aura (MO). The Potassium Channel, Subfamily K, member 18 (KCNK18) gene, coding the potassium channel TRESK, is the first gene in which a rare mutation resulting in a non-functional truncated protein has been identified and causally linked to MA in a multigenerational family. In this study, three common polymorphisms in the KCNK18 gene were analysed for genetic variation in an Australian case-control migraine population consisting of 340 migraine cases and 345 controls. No association was observed for the polymorphisms examined with the migraine phenotype or with any haplotypes across the gene. Therefore even though the KCNK18 gene is the only gene to be causally linked to MA our studies indicate that common genetic variation in the gene is not a contributor to MA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common, genetically influenced neurovascular disorder. The dopamine transporter gene is a candidate for migraine association studies. This study tested a functionally linked variable number tandem repeat (VNTR) in intron 8 of the dopamine transporter gene (DATInt8) in 550 migraine cases (401 with aura, 149 without aura) and 550 non-migraine controls. Chi-squared analysis of the DATInt8 revealed that the allele and genotype frequency distributions for migraine cases (including subtype analysis) and controls were not different (P > 0.1). These findings offer no evidence for an association of the DATInt8 with migraine with and without aura and therefore do not implicate the dopamine transporter gene as a modifier of migraine risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate through direct sequencing the insulin receptor (INSR) gene in DNA samples from a migraine affected family previously showing linkage to chromosome 19p13 in an attempt to detect disease associated mutations. Migraine is a common debilitating disorder with a significant genetic component. At present, the number and type of genes involved in the common forms of migraine are not clear. The INSR gene on chromosome 19p13.3-13.2 is a gene of interest since a number of single nucleotide polymorphisms (SNPs) located within the gene have been implicated in migraine with (MA) and without aura (MO). Six DNA samples obtained from non-founding migraine affected members of migraine family 1 (MF1) were used in this study. Genomic DNA was sequenced for the INSR gene in exons 1-22 and the promoter region. In the six migraine family member samples, previously reported SNPs were detected within two exonic DNA coding regions of the INSR gene. These SNPs, in exons 13 and 17, do not alter the normal INSR polypeptide sequence. In addition, intron 7 also revealed a DNA base sequence variation. For the 5' untranslated promoter region of the gene, no mutations or polymorphisms were detected. In conclusion, this study detected no INSR mutations in affected members of a chromosome 19 linked migraine pedigree. Hence, migraine linkage to this chromosomal region may involve other candidate genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a prevalent neurovascular disease with a significant genetic component. Linkage studies have so far identified migraine susceptibility loci on chromosomes 1, 4, 6, 11, 14, 19 and X. We performed a genome-wide scan of 92 Australian pedigrees phenotyped for migraine with and without aura and for a more heritable form of “severe” migraine. Multipoint non-parametric linkage analysis revealed suggestive linkage on chromosome 18p11 for the severe migraine phenotype (LOD*=2.32, P=0.0006) and chromosome 3q (LOD*=2.28, P=0.0006). Excess allele sharing was also observed at multiple different chromosomal regions, some of which overlap with, or are directly adjacent to, previously implicated migraine susceptibility regions. We have provided evidence for two loci involved in severe migraine susceptibility and conclude that dissection of the “migraine” phenotype may be helpful for identifying susceptibility genes that influence the more heritable clinical (symptom) profiles in affected pedigrees. Also, we concluded that the genetic aetiology of the common (International Headache Society) forms of the disease is probably comprised of a number of low to moderate effect susceptibility genes, perhaps acting synergistically, and this effect is not easily detected by traditional single-locus linkage analyses of large samples of affected pedigrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels. Methods The present association study tested whether length variations in the second (more 3') polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO). In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis. Results Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090). Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05). The prevalence of the long CAG repeat (>19 repeats) did not reach statistical significance in migraineurs (P = 0.15), nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively), or between MA vs MO (P = 0.40). Conclusion This association study provides no evidence that length variations of the second polyglutamine array in the N-terminus of the KCNN3 channel exert an effect in the pathogenesis of migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine, with and without aura (MA and MO), is a prevalent and complex neurovascular disorder that is likely to be influenced by multiple genes some of which may be capable of causing vascular changes leading to disease onset. This study was conducted to determine whether the ACE I/D gene variant is involved in migraine risk and whether this variant might act in combination with the previously implicated MTHFR C677T genetic variant in 270 migraine cases and 270 matched controls. Statistical analysis of the ACE I/D variant indicated no significant difference in allele or genotype frequencies (P > 0.05). However, grouping of genotypes showed a modest, yet significant, over-representation of the DD/ID genotype in the migraine group (88%) compared to controls (81%) (OR of 1.64, 95% CI: 1.00–2.69, P = 0.048). Multivariate analysis, including genotype data for the MTHFR C677T, provided evidence that the MTHFR (TT) and ACE (ID/DD) genotypes act in combination to increase migraine susceptibility (OR = 2.18, 95% CI: 1.15–4.16, P = 0.018). This effect was greatest for the MA subtype where the genotype combination corresponded to an OR of 2.89 (95% CI:1.47–5.72, P = 0.002). In Caucasians, the ACE D allele confers a weak independent risk to migraine susceptibility and also appears to act in combination with the C677T variant in the MTHFR gene to confer a stronger influence on the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine (with and without aura) is a prevalent neurovascular disease that shows strong familial aggregation, although the number of genes involved and the mode of inheritance is not clear. Some insight into the disease has been gained from genetic studies into a rare and very severe migraine subtype known as familial hemiplegic migraine (FHM). In this study, we took a family-based linkage and association approach to investigate the FHM susceptibility region on chromosome 1q31 for involvement in typical migraine susceptibility in affected Australian pedigrees. Initial multipoint ALLEGRO analysis provided strong evidence for linkage of Chrlq31 markers to typical migraine in a large multigenerational pedigree. The 1-LOD* unit support interval for suggestive linkage spanned approximately 18 cM with a maximum allele sharing LOD* score of 3.36 obtained for marker D1S2782 (P=0.00004). Subsequent analysis of an independent sample of 82 affected pedigrees added support to the initial findings with a maximum LOD* of 1.24 (P=0.008). Utilising the independent sample of 82 pedigrees, we also performed a family-based association test. Results of this analysis indicated distortion of allele transmission at marker D1S249 [global chi2 (5) of 15.00, P=0.010] in these pedigrees. These positive linkage and association results will need further confirmation by independent researchers. However, overall they provide good evidence for the existence of a typical migraine locus near these markers on Chrlq3l, and reinforce the idea that an FHM gene in this genomic region may also contribute to susceptibility to the more common forms of migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical migraine is a complex neurological disorder comprised of two main subtypes: migraine with (MA) and without aura (MO). The disease etiology is still unclear, but family studies provide strong evidence that defective genes play an important role. Familial hemiplegic migraine (FHM) is a very rare and severe subtype of MA. It has been proposed that FHM and MA may have a similar genetic etiology. Therefore, genetic studies on FHM provide a useful model for investigating the more prevalent types of typical migraine. FHM in some families has been shown to be caused by mutations in a brain-specific P/Q-type calcium channel alpha1 subunit gene (CACNA1A) on chromosome 19p13. There has also been a report of a CACNA1A mutation being associated with MA in a patient from a family with predominant FHM. We have previously demonstrated suggestive linkage of typical migraine in a large Australian family to the FHM region on chromosome 19p13. These findings suggest that CACNA1A may also be implicated in the etiology of typical migraine in this pedigree. To investigate this possibility, we sequenced two patients carrying the critical susceptibility haplotype surrounding CACNA1A. No disease-causing mutations or polymorphisms were revealed in any of the 47 exons screened. To determine whether the CACNA1A gene was implicated in typical migraine susceptibility in the general Caucasian population, we also analyzed 82 independent pedigrees and a large case control group. We did not detect any linkage or association in these groups and conclude that if CACNA1A plays a role in typical migraine, it does not confer a major effect on the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD). Methods: Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci. Results: We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP). Conclusions: The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The serotonergic system is thought to play an important role for mediating susceptibility to migraine and depression, which is frequently found comorbid in migraine. The functional polymorphism in the serotonin transporter gene linked polymorphic region (5-HTTLPR/SLC6A4) was previously associated with attack frequency and, thus, possibly with chronification. OBJECTIVE: We hypothesized that patients with the "s" allele have higher attack frequency and, paralleling results in depression research, higher scores of depression. METHODS: Genetic analysis of the SLC6A4 44 bp insertion/deletion polymorphism (5-HTTLPR) was performed in 293 patients with migraine with and without aura. Self-rating questionnaires were used for assessment of depression. RESULTS: Multinomial logistic regression analysis found no evidence for association of the 5-HTTLPR polymorphism with either depression or migraine attack frequency. CONCLUSION: We were not able to demonstrate any influence of the serotonin transporter 5-HTTLPR polymorphism on migraine phenomenology (attack frequency or comorbid depression), thereby excluding this variant to be a common genetic denominator for chronic migraine and depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class analysis was performed on migraine symptom data collected in a Dutch population sample (N = 12,210, 59% female) in order to obtain empirical groupings of individuals suffering from symptoms of migraine headache. Based on these heritable groupings (h(2) = 0.49, 95% CI: 0.41-0.57) individuals were classified as affected (migrainous headache) or unaffected. Genome-wide linkage analysis was performed using genotype data from 105 families with at least 2 affected siblings. In addition to this primary phenotype, linkage analyses were performed for the individual migraine symptoms. Significance levels, corrected for the analysis of multiple traits, were determined empirically via a novel simulation approach. Suggestive linkage for migrainous headache was found on chromosomes 1 (LOD = 1.63; pointwise P = 0.0031), 13 (LOD = 1.63; P = 0.0031), and 20 (LOD = 1.85; P = 0.0018). Interestingly, the chromosome 1 peak was located close to the ATP1A2 gene, associated with familial hemiplegic migraine type 2 (FHM2). Individual symptom analysis produced a LOD score of 1.97 (P = 0.0013) on chromosome 5 (photo/phonophobia), a LOD score of 2.13 (P = 0.0009) on chromosome 10 (moderate/severe pain intensity) and a near significant LOD score of 3.31 (P = 0.00005) on chromosome 13 (pulsating headache). These peaks were all located near regions previously reported in migraine linkage studies. Our results provide important replication and support for the presence of migraine susceptibility genes within these regions, and further support the utility of an LCA-based phenotyping approach and analysis of individual symptoms in migraine genetic research. Additionally, our novel "2-step" analysis and simulation approach provides a powerful means to investigate linkage to individual trait components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study analyzed the (ICHD I-1988) and ( ICHD II-2004) diagnostic criteria in children and adolescents. Our population consisted of 496 patients of the Headache Outpatient Ward for Children and Adolescents retrospectively studied from 1992 to 2002. Individuals were classified according to three diagnostic groups: Intuitive Clinical Diagnosis ( Gold Standard), ICHD I-1988 and ICHD II-2004. They were statistically compared using the variables: Sensitivity ( S), Specificity (Sp), Positive Predictive Value (PPV), Negative Predictive Value (NPV). When ICHD I-1988 was used, the sensitivity of migraine without and with aura was 21% and 27%, respectively, whereas in ICHD II-2004 it changed to 53% and 71% without affecting specificity. As a conclusion, the current classification criteria ( ICHD II-2004) showed greater sensitivity and high specificity for migraine than ICHD I-1988, although it improved migraine diagnosis in children and adolescents, the sensitivity remains poor.