864 resultados para MHD instabilities
Resumo:
The stability (evolutionarity) problem for a kind of MHD shock waves is discussed in this paper. That is to solve the interaction problem of MHD shock waves with (2-dimensional) oblique incident disturbances. In other words, the result of gasdynamic shocks is generalized to the case of MHD shocks. The previous conclusion of stability theory of MHD shock waves obtained from the solution of interaction problem of MHD shock wave with (one-dimensional) normal shock wave is that only fast and slow shocks are stable, and intermediate shocks are unstable. However, the results of this paper show that when the small disturbances are the Alfven waves a new stability condition which is related to the parameters in front of and behind the shock wave is derived. When the disturbances are entropy wave and fast and slow magneto acoustic waves the stability condition is related to the frequency of small disturbances. As the limiting ease, i. e. when a normal incident (reflection, refraction) is consid...更多ered, the fast and slow shocks are unstable. The results also show that the conclusion drawn by Kontorovich is invalid for the stability theory of shock waves.
Resumo:
The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen's experimental observation with the previous linear stability analysis results of Renardy et al.
Resumo:
激波边界层相互作用是高超声速飞行器面临的重大问题,激波入射到平板引起的边界层分离是其中最具代表性的一种.用加权的3阶ENN格式计算了小磁雷诺数近似的MHD方程,研究了 MHD控制层流边界层分离的机理.数值结果显示,通过局部电离空气并施加洛伦兹力,能使分离点向下游移动,分离区尺寸减小,从而抑制和缓解由于激波-边界层相互作用而引起的分离.