911 resultados para MEV RANGE 10-100


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the potential of using novel zoledronic acid (ZOL)-hydroxyapatite (HA) nanoparticle based drug formulation in a rat model of postmenopausal osteoporosis. By a classical adsorption method, nanoparticles of HA loaded with ZOL (HNLZ) drug formulation with a size range of 100-130 nm were prepared. 56 female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into seven groups and treated with various doses of HNLZ (100, 50 and 25 mu g/kg, intravenous single dose), ZOL (100 mu g/kg, intravenous single dose) and HA nanoparticle (100 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. After three months treatment period, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for trabecular microarchitecture. Sensitive biochemical markers of bone formation and bone resorption in serum were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the therapy with HNLZ drug formulation was more effective than ZOL therapy in OVX rats. Moreover, HNLZ drug therapy preserved the trabecular microarchitecture better than ZOL therapy in OVX rats. Furthermore, the HNLZ drug formulation corrected increase in serum levels of bone-specific alkaline phosphatase, procollagen type I N-terminal propeptide, osteocalcin, tartrate-resistant acid phosphatase 5b and C-telopeptide of type 1 collagen better than ZOL therapy in OVX rats. The results strongly suggest that HNLZ novel drug formulation appears to be more effective approach for treating severe osteoporosis in humans. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric properties of semiconducting beta-FeSi2 containing a homogeneous distribution of Si secondary phase have been studied. The synthesis was carried out using arc melting followed by the densification by uniaxial hot pressing. Endogenous beta-FeSi2/Si composites were produced by the eutectoid decomposition of high-temperature alpha-Fe2Si5 phase. The aging heat treatments have been carried out at various temperatures below the equilibrium eutectoid temperature for various durations in order to tune the size of the eutectoid product. Thermal properties of the samples were studied in the temperature range of 100-350 A degrees C. The microstructural investigations support the fact that the finest microstructure generated through the eutectoid decomposition of the alpha-Fe2Si5 metastable phase is responsible of the phonon scattering. The results suggest an opportunity to produce bulk iron silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ready-to-use screen printed glucose sensors are fabricated using Prussian Blue (PB) and Cobalt Phthalocyanine (CoPC) mediated carbon inks as working electrodes. The reference and counter electrodes are screen printed using silver/silver chloride and graphitic carbon paste respectively. The screen printed reference electrodes (internal reference electrode (IRE)) are found to be stable for more than 60 minutes when examined with saturated calomel electrode. Optimal operating voltage for PB and CoPC screen printed sensors are determined by hydrodynamic voltammetric technique. Glucose oxidase is immobilized on the working electrodes by cross-linking method. PB mediated glucose sensor exhibits a sensitivity of 5.60 mA cm(-2)/mM for the range, 10 to 1000 mu M. Sensitivity of CoPC mediated glucose sensor is found to be 5.224 mu A cm(-2)/mM and amperometeric response is linear for the range, 100 to 1500 mu M. Interference studies on the fabricated glucose sensors are conducted with species like uric acid and ascorbic acid. PB mediated sensors showed a completely interference-free behavior. The sensing characteristics of PB mediated glucose sensors are also studied in diluted human serum samples and the results are compared with the values obtained through standard clinical method. The co-efficient of variation is found to be less than 5%. (C) 2015 The Electrochemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximum, spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1-100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves; beta(m,perpendicular to) is seen to be less than, that:measured parallel to grooves, beta(m,perpendicular to).The difference between beta(m,perpendicular to), and beta(m,parallel to) increases with drop impact velocity. This deviation of beta(m,perpendicular to) from beta(m,parallel to) is analyzed by considering the possible mechanisms, correspond, ing to experimental observations (1) impregnation of drop into the grooves, (2) convex shape of liquid vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edges by incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed: deviation of beta(m,perpendicular to) from beta(m,parallel to) compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts beta(m,perpendicular to) on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters,on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning, absent, predicts beta(m,parallel to) with an average error of 6.3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axisymmetric notched bars with notch roots of large and small radii were tested under large strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized form. Both the triaxial tensile stress within the central region of specimens and static damage caused by the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter DELTAepsilon is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to illustrate the behaviour reported in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat transfer characteristics of China no. 3 kerosene were investigated experimentally and analytically under conditions relevant to a regenerative cooling system for scramjet applications. A test facility developed for the present study can handle kerosene in a temperature range of 300-1000 K, a pressure range of 2.6-5 MPa, and a mass How rate range of 10-100 g/s. In addition, the test section was uniquely designed such that both the wall temperature and the bulk fuel temperature were measured at the same location along the flowpath. The measured temperature distributions were then used to analytically deduce the local heat transfer characteristics. A 10-component kerosene surrogate was proposed and employed to calculate the fuel thermodynamic and transport properties that were required in the heat transfer analysis. Results revealed drastic changes in the fuel flow properties and heat transfer characteristics when kerosene approached its critical state. Convective heat transfer enhancement was also found as kerosene became supercritical. The heat transfer correlation in the relatively low-fuel-temperature region yielded a similar result to other commonly used jet fuels, such as JP-7 and JP-8, at compressed liquid states. In the high-fuel-temperature region, near and beyond the critical temperature, heat transfer enhancement was observed; hence, the associated correlation showed a more significant Reynolds number dependency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I.

We have developed a technique for measuring the depth time history of rigid body penetration into brittle materials (hard rocks and concretes) under a deceleration of ~ 105 g. The technique includes bar-coded projectile, sabot-projectile separation, detection and recording systems. Because the technique can give very dense data on penetration depth time history, penetration velocity can be deduced. Error analysis shows that the technique has a small intrinsic error of ~ 3-4 % in time during penetration, and 0.3 to 0.7 mm in penetration depth. A series of 4140 steel projectile penetration into G-mixture mortar targets have been conducted using the Caltech 40 mm gas/ powder gun in the velocity range of 100 to 500 m/s.

We report, for the first time, the whole depth-time history of rigid body penetration into brittle materials (the G-mixture mortar) under 105 g deceleration. Based on the experimental results, including penetration depth time history, damage of recovered target and projectile materials and theoretical analysis, we find:

1. Target materials are damaged via compacting in the region in front of a projectile and via brittle radial and lateral crack propagation in the region surrounding the penetration path. The results suggest that expected cracks in front of penetrators may be stopped by a comminuted region that is induced by wave propagation. Aggregate erosion on the projectile lateral surface is < 20% of the final penetration depth. This result suggests that the effect of lateral friction on the penetration process can be ignored.

2. Final penetration depth, Pmax, is linearly scaled with initial projectile energy per unit cross-section area, es , when targets are intact after impact. Based on the experimental data on the mortar targets, the relation is Pmax(mm) 1.15es (J/mm2 ) + 16.39.

3. Estimation of the energy needed to create an unit penetration volume suggests that the average pressure acting on the target material during penetration is ~ 10 to 20 times higher than the unconfined strength of target materials under quasi-static loading, and 3 to 4 times higher than the possible highest pressure due to friction and material strength and its rate dependence. In addition, the experimental data show that the interaction between cracks and the target free surface significantly affects the penetration process.

4. Based on the fact that the penetration duration, tmax, increases slowly with es and does not depend on projectile radius approximately, the dependence of tmax on projectile length is suggested to be described by tmax(μs) = 2.08es (J/mm2 + 349.0 x m/(πR2), in which m is the projectile mass in grams and R is the projectile radius in mm. The prediction from this relation is in reasonable agreement with the experimental data for different projectile lengths.

5. Deduced penetration velocity time histories suggest that whole penetration history is divided into three stages: (1) An initial stage in which the projectile velocity change is small due to very small contact area between the projectile and target materials; (2) A steady penetration stage in which projectile velocity continues to decrease smoothly; (3) A penetration stop stage in which projectile deceleration jumps up when velocities are close to a critical value of ~ 35 m/s.

6. Deduced averaged deceleration, a, in the steady penetration stage for projectiles with same dimensions is found to be a(g) = 192.4v + 1.89 x 104, where v is initial projectile velocity in m/s. The average pressure acting on target materials during penetration is estimated to be very comparable to shock wave pressure.

7. A similarity of penetration process is found to be described by a relation between normalized penetration depth, P/Pmax, and normalized penetration time, t/tmax, as P/Pmax = f(t/tmax, where f is a function of t/tmax. After f(t/tmax is determined using experimental data for projectiles with 150 mm length, the penetration depth time history for projectiles with 100 mm length predicted by this relation is in good agreement with experimental data. This similarity also predicts that average deceleration increases with decreasing projectile length, that is verified by the experimental data.

8. Based on the penetration process analysis and the present data, a first principle model for rigid body penetration is suggested. The model incorporates the models for contact area between projectile and target materials, friction coefficient, penetration stop criterion, and normal stress on the projectile surface. The most important assumptions used in the model are: (1) The penetration process can be treated as a series of impact events, therefore, pressure normal to projectile surface is estimated using the Hugoniot relation of target material; (2) The necessary condition for penetration is that the pressure acting on target materials is not lower than the Hugoniot elastic limit; (3) The friction force on projectile lateral surface can be ignored due to cavitation during penetration. All the parameters involved in the model are determined based on independent experimental data. The penetration depth time histories predicted from the model are in good agreement with the experimental data.

9. Based on planar impact and previous quasi-static experimental data, the strain rate dependence of the mortar compressive strength is described by σf0f = exp(0.0905(log(έ/έ_0) 1.14, in the strain rate range of 10-7/s to 103/s (σ0f and έ are reference compressive strength and strain rate, respectively). The non-dispersive Hugoniot elastic wave in the G-mixture has an amplitude of ~ 0.14 GPa and a velocity of ~ 4.3 km/s.

Part II.

Stress wave profiles in vitreous GeO2 were measured using piezoresistance gauges in the pressure range of 5 to 18 GPa under planar plate and spherical projectile impact. Experimental data show that the response of vitreous GeO2 to planar shock loading can be divided into three stages: (1) A ramp elastic precursor has peak amplitude of 4 GPa and peak particle velocity of 333 m/s. Wave velocity decreases from initial longitudinal elastic wave velocity of 3.5 km/s to 2.9 km/s at 4 GPa; (2) A ramp wave with amplitude of 2.11 GPa follows the precursor when peak loading pressure is 8.4 GPa. Wave velocity drops to the value below bulk wave velocity in this stage; (3) A shock wave achieving final shock state forms when peak pressure is > 6 GPa. The Hugoniot relation is D = 0.917 + 1.711u (km/s) using present data and the data of Jackson and Ahrens [1979] when shock wave pressure is between 6 and 40 GPa for ρ0 = 3.655 gj cm3 . Based on the present data, the phase change from 4-fold to 6-fold coordination of Ge+4 with O-2 in vitreous GeO2 occurs in the pressure range of 4 to 15 ± 1 GPa under planar shock loading. Comparison of the shock loading data for fused SiO2 to that on vitreous GeO2 demonstrates that transformation to the rutile structure in both media are similar. The Hugoniots of vitreous GeO2 and fused SiO2 are found to coincide approximately if pressure in fused SiO2 is scaled by the ratio of fused SiO2to vitreous GeO2 density. This result, as well as the same structure, provides the basis for considering vitreous Ge02 as an analogous material to fused SiO2 under shock loading. Experimental results from the spherical projectile impact demonstrate: (1) The supported elastic shock in fused SiO2 decays less rapidly than a linear elastic wave when elastic wave stress amplitude is higher than 4 GPa. The supported elastic shock in vitreous GeO2 decays faster than a linear elastic wave; (2) In vitreous GeO2 , unsupported shock waves decays with peak pressure in the phase transition range (4-15 GPa) with propagation distance, x, as α 1/x-3.35 , close to the prediction of Chen et al. [1998]. Based on a simple analysis on spherical wave propagation, we find that the different decay rates of a spherical elastic wave in fused SiO2 and vitreous GeO2 is predictable on the base of the compressibility variation with stress under one-dimensional strain condition in the two materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A feeding trial was conducted for six months in farmer's ponds to assess the performance of BFRI formulated catfish feed on the growth and survival of Clarias batrachus (L.). Nine interested farmers and their ponds (size range: 10-15 dec) in the Barera union of Mymensingh Sadar were selected. The ponds were divided into 3 treatments each with 3 replications. Among the three treatment diets, two diets - traditional (F1) and BFRI formulated (F3) were prepared by using low cost agro-based locally available ingredients and the commercial diets was Saudi-Bangla Grower-1 (F2). The diets were designed as F1, F2 and F3 for traditional (20.40% protein), Commercial (31% protein) and BFRI formulated (30.44% protein) diets respectively. The fingerlings of catfish (7.3 g) were collected from local fish vendors and stocked at the rate of 100/dec. Feeding rates were adjusted by weight after fortnightly sampling of fish. Feeding rate were 10 and 8% of the total body weight respectively for 1st, 2nd month and 5% for the rest of the experimental period. The range of some selected water quality parameters were as follows: dissolved oxygen 4.0 - 7.4 mg/l, temperature 24.0°- 33.9°C, pH 6.8 - 8.00, and transparency 17.0 - 32.00 cm. Which showed suitability of the ponds for rearing fish. At the end of the experiment, significantly highest gain (p<0.05) in weight (1210.96% ±87) and lowest gain in weight (865.25% ±90) were observed in the group of fish fed on diets F3 and F1 respectively. However, no significant differences in growth (p>0.05) was observed in fish fed on commercial diet (F2) and BFRI formulated diet (F3). The FCR value ranged between 2.00 and 2.80 with the traditional diet (F1) showing significantly lower FCR. The total production of fish ranged between 1398.08 and 2145.34 kg/ha with F3 diet resulting in the highest production and net profit. A simple economic analysis showed that fish fed with BFRI formulated (F3) diet resulted in the highest net profit in farmer's pond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied in the laboratory the population growth rates of four cladocerans fed both with decomposed Microcystis aeruginosa and with a mixture of fresh colonial M. aeruginosa and Scenedesmus obliquus. The neonates of Diqphanosoma brachyurum and Daphnia carinata were able to develop into adults when they were fed with <64mum decomposed M. aeruginosa, while those of Moina micrura could not use decomposed M. aeruginosa. The population growth rate of the largest species, D. carinata, was less affected by the presence of fresh colonial M. aeruginosa than the other three species. D. carinata obtained the highest growth rate at a biomass level of 10 mg L-1 fresh colonial M. aeruginosa, indicating that, to some extent, it can use colonial M. aeruginosa at a size range of 64-112mum. The population growth rate of M. micrura was negatively correlated with fresh colonial M. aeruginosa within a range of 10-100 mg L-1. The population growth rates of D. brachyurum and Ceriodaphnia cornuta were remarkably decreased by fresh colonial M. aeruginosa, although no significant difference was found within the M. aeruginosa biomass range of 10-100 mg L-1 for either cladoceran. At a biomass level of 50 mg L-1 M. aeruginosa, the population growth rates of the four cladocerans positively correlated with S. obliquus biomass within a range of 0.1-5.0 mg L-1. Our results indicate that the zooplankton community under bloom condition is shaped by the quantity of both M. aeruginosa and other edible algae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

中能重离子碰撞(10-100 MeV/u)为研究热核性质提供了有力的工龄。为此我们利用HIRFL提供的46.7 MeV/u ~(12)C束轰击~(159)Tb/~(197)Au/~(209)Bi研究了线动量转移分析、出平面角分布和质量分布,实验结果的分析证实了非完全熔合核的裂变和蒸发。编写了一个Monte-Carlo统计衰变程序(SAGEE)并用于详细比较C+Au、C+Bi的实验数据,C+Tb的质量分布由统计两体发射理论(GEMINI)得到了解释。理论与实验的符合说明:通常类熔合反应方式形成了高激发的复合核,其后以统计两体衰变而退激。实验也统计了与裂变符合的γ能谱、三裂变的相对角度和相对速度分布,没有观察到GDR,对称三裂不是唯一的三裂方式。本文分析了HIRFL上其他小组的实验结果。研究了46.7MeV/u ~(12)C+~(58)Ni反应的复杂粒子发射,也研究了复杂粒子出射对用放射化学方法测量的24MeV/u ~(12)C+~(64)Cu和42MeV/u ~(12)C+~(115)In的质量产额分布的解释。GEMINI计算很好地符合了实验结果,这意味着非完全熔合反应形成的复合核的两体衰变仍是主要的发射过程。本文也简要讨论了多重碎裂过程。基于卡西尼亚卵形体裂变形状,计算了转动核的对称和非对称形变势能,用此模型得到了核的静态裂变位垒、鞍点能并与RLDM和RFRM作了比较。我们考虑了YPE核势对核表面的弥散作用以及弥散核表面对库仑能、转动惯量的影响完善了RCOM,我们的RFCOM比RLDM和RFRM都有明显的改进,可以用于重核裂变性质研究。发展了熔合-裂变过程的宏观模型,计算了形成复合核~(149)Tb、~(194)Hg的熔合过程及其相应的裂变过程。本工作对研究热核的形成及其衰变性无疑是很有用的

Relevância:

100.00% 100.00%

Publicador:

Resumo:

重离子核反应机制的研究一直是人们关注的课题。入射能量较低时,集体效应占主要地位,反应为熔合反应及深部非弹性碰撞,实验可用平均场理论进行解释。当入射能量较高时,平均场效应消失,核子-核子碰撞起主要作用,实验可用参加者-旁观者模型来描述。中能区(10-100 MeV/u)的重离子反应既具有低能下一体耗散的特点,又具有高能下核子-核子碰撞的特征,由于作用时间短,非平衡现象变得很重要。在这一能区,多种反应机制共存并相互竞争。对这一能区的重离子核反应制的研究将有助于我们更清楚地了解原子核的结构。为此,我们在兰州重离子加速器HIRFL上进行了46.7 MeV/u ~(12)C引起的重离子反应中前方向出射产物的测量,着重讨论了周边反应中的弹核碎裂和转移反应以及它们的相互竞争。实验中用46.7 MeV/u ~(12)C束流轰击四种靶核:~(58)Ni、~(64)Ni、~(115)In和~(197)Au。通过对前方向出射的类弹碎片的测量,发现它们的平行动量分布宽度满足Goldhaber关系式,提取的约化平行动量分布宽度σ_0 = 80 ± 10 MeV/c,与相对论情形下的值接近,并且σ_0对于各种反应系统均相同。反应中弹核碎裂产物的最可几能量可用Abrasion图象来解释。对于质量接近弹核的类弹碎片,将碎裂部分和转移部分分开后,提取的转移部分的约化平行动量分布宽度为44 ± 10 MeV/c,这比弹核碎裂部分的宽度要窄,说明转移反应比弹核裂受到相空间中更严格的限制。弹核碎裂和转移反应的几率都随靶核质量增加而增加,并且与被转移结团的结构有关。转移反应主要对弹核附近的类弹碎片有贡献,当类弹碎片质量与弹核质量相差较大时,主要是弹核碎裂的贡献。对反应中的同位素产额分布也进行了分析,结果表明,类弹碎片的同位素分布对靶核有依赖关系,当靶核的N/Z增加时,产物的N/Z也增加,并且低能部分的N/Z比高能部分的N/Z要大。当角度变大时,~7Li/~6Li、~9Be/~7Be、~(11)B/~(10)B等同位素产额比随之变化,低能部分变化缓慢,高能部分则变化明显。产物的同位素产额分布或同位素产额比反映了系统由非平衡向平衡演化的过程。实验中对于BaF_2晶体与半导体组成的望远镜探测器的性能进行了测量。圆柱形BaF_2晶体后配以XP2020Q型光电倍增管,输出信号送入不同的QDC,以获得BaF_2中光输出的快慢成分。ΔE-E方法可以得到较好的元素鉴别,即使对低能的p、d、t也能分开,用快慢成分关联方法可对较高能量的轻带电粒子很好地鉴别。入射离子越重,相同能量的离子在BaF_2晶体中引起的光输出越小。BaF_2对入射离子的响应在较大的能区内是线性的,在低能时存在轻微的非线性。对80 cm大面积位置灵敏电离室与一维位置灵敏塑料闪烁体组成的探测系统首次在中能重离子反应中进行了测试。电离室可以测量较重的低能离子,有较好的粒子鉴别能力,能给出能量信息及两维位置信息。闪烁体则使得该系统可用于较高能量轻带电粒子的测量,它能给出能量吸一维位置信息,与电离室配合可以进行元素鉴别。它将在以后的中能重离子实验中得到广泛的应用