930 resultados para METHYL-METHACRYLATE POLYMERIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics is applied to the system of polystyrene-block-poly(methyl methacrylate). The simulation shows that for the block copolymer system, a layered structure, which reflects microphase separation, is obtained and this structure is stable. In order to elucidate that the formation of the layered structure is reasonable, some static properties such as the radial distribution function and the dipole moment are analyzed in some detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toughening effect of the shell content of a core-shell latex polymer poly(butyl acrylate) (PBA)-cs-poly(methyl methacrylate) (PMMA) on its blends with polycarbonate (PC) was studied. The changes of mechanical properties, morphology, and compatibility of the blends of PC/PBA-cs-PMMA with the change of the shell thickness of PBA-cs-PMMA were investigated. It is interesting to notice that mechanical properties of the blends are very sensitive to the shell thickness (i.e., shell content), and that there is a possibility to adjust the impact and tensile properties of the blend by selecting a PBA-cs-PMMA with a proper core/shell ratio. Hence, a modified PC material with balanced mechanical properties may be prepared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flory solution theory modified by Hamada et al. (Macromolecules, 1980, 13, 729) was used to predict the miscibility of blends of poly(ethylene oxide) with poly(methyl methacrylate) (PEO-aPMMA) and with poly(vinyl acetate) (PEO-PVAc). Interaction parameters of a PEO-aPMMA blend with the weight ratio of PEO/aPMMA = 50/50 at the temperature range of 393-433 K and PEO-PVAc blends with different compositions and temperatures were calculated from the determined equation-of-state parameters based on Flory solution theory modified by Hamada ed al. Results show that interaction parameters of the PEO-aPMMA blend are negative and can be comparable with values obtained from neutron-scattering measurements by Ito et al. (Macromolecules, 1987, 20, 2213). Also, interaction parameters and excess volumes of PEO-PVAc blends are negative and increase with enhancing the content of PEO and the temperature. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of chromophore-labeled LLDPE and chromophore-labeled PMMA compatibilized by block copolymer of hydrogenated polybutadiene and methyl methacrylate (PHB-b-PMMA) were studied by nonradiative energy transfer (NRET) technique. The ratio of fluorescence intensity of the donor at 336 nm and the acceptor at 408 nm (I-D/I-A) decreased with an increase in block copolymer content. At about 8 wt.-% block copolymer content I-D/I-A reached a minimum value, indicating the interdiffusion of LLDPE chains and PMMA chains in the interface is strongest. The influence of temperature on the interdiffusion of polymer chains in the interface was also examined. Samples quenched in liquid nitrogen from 140 degrees C showed lower energy transfer efficiencies than those annealed from 150 degrees C to room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of poly(vinyl methyl ether) (PVME) and poly(methyl methacrylate) (PMMA) compatibilized by poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) ale studied by FT-IR, DSC, excimer fluorescence spectrometry, and scanning electron microscopy (SEM). In FT-IR measurement the ratio of absorption intensity at 1107 cm(-1) to that at 1085 cm(-1) (I-1107/I-1085) reaches a minimum at about 10wt% block copolymer content. DSC results show that the glass transition temperature of PVME in the blends has a maximum at 10 wt% copolymer content. In plots of the ratio of excimer-to-monomer fluorescence emission intensities (I-E/I-M) VS block copolymer content, I-E/I-M increases rapidly above 10%. Ail these phenomena show that PS block chains penetrate into PVME: domains on addition of block copolymer. Above 10% copolymer content, block copolymer chains tend to form micelles in bulk phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two etching techniques are used to reveal the morphology of PC/PBA-cs-PMMA blend. One is based on acetic acid (CH3COOH) solutions, whereas the other uses CCl4/ C2H5OH (3/1 v/v). The latter approach shows to be more appropriate and successful for revealing the morphology of PC/PBA-cs-PMMA blend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization and unusual crystalline morphologies of compatible mixtures of tetrahydrofuran-methyl methacrylate diblock copolymer with tetrahydrofuran homopolymer were studied. It is shown that the PTHF [poly(tetrahydrofuran)] block of the copolymer cocrystalizes with the PTHF homopolymer in the PTHF microphase of the blend. However, the degree of crystallinity of the PTHF block is always lower than that of the PTHF homopolymer in the PTHF microphase. The crystallizability of the PTHF microphase increases appreciably with increasing PTHF microphase size and PTHF homopolymer weight fraction in the microphase. The morphology study of the blends shows that the crystalline morphology is strongly dependent on blend composition, copolymer composition and PTHF block length, as well as crystallization temperature. When alternating PTHF and PMMA [poly(methyl methacrylate)] lamellae are formed, the macroscopic crystalline morphology could be only observed when the thickness of the PTHF lamellae is large enough (similar to 20 nm). In the blend where PMMA spherical or cylindrical microphases are formed, the crystalline morphology changes dramatically with the change in the PTHF microdomain size and PMMA interdomain distance. Many unusual crystalline morphologies have been observed. A study of the solution-crystallized morphology of the blends at different temperatures shows that the morphology is also strongly dependent on the isothermal crystallization temperature, suggesting that the PMMA microdomains may have different effects on the morphology formation when the blend is crystallized at different rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to study the miscibility of blends of a graft copolymer of poly(methyl methacrylate) on linear low density polyethylene (LLDPE-g-PMMA, G-3) with poly(vinylidene fluoride)(b) (PVF2) and the compatibilization of blends of LLDPE/PVF2. The specific interaction between PMMA side chains and PVF2 in G-3/PVF2 binary blends is weaker than that between the homopolymers PMMA and PVF2. There are two states of PVF2 in the melt of a G-3/PVF2 (60/40, w/w) blend, one as pure PVF2 and the other interacting with PMMA side chains. The miscibility between PMMA side chains and PVF2 affects the crystallization of PVF2. LLDPE-g-PMMA was demonstrated to be a good compatibilizer in LLDPE/PVF2 blends, improving the interfacial adhesion and dispersion in the latter. Diffusion of PMMA side chains into PVF2 in the interfacial region reduces the crystallization rate and lowers the melting point (T-m) and the crystallization temperature (T-c) of PVF2 in the blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility of blends of poly(styrene-co-acrylonitrile) (SAN) with poly(methyl methacrylate) (PMMA) or poly(ethyl methacrylate) (PEMA) has been investigated by means of NMR and DSC techniques. It is found that there are intermolecular interactions between the phenyl groups in SAN and carbonyl groups in PMMA or PEMA, and the strength of this intermolecular interaction strongly depends on the properties of ester side groups in PEMA or PMMA, composition of the blends and a certain composition of the copolymer. It is this specific interaction instead of the intramolecular repulsion force within the copolymer that plays a key role for the miscibility of SAN/PMMA and SAN/PEMA blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility of blends of poly(vinylidene chloride-co-acrylonitrile) (VDC-AN) and poly(methyl methacrylate) (PMMA) has been studied with DSC, FT-IR, and NMR methods. The results indicate that the VDC-AN/PMMA blends are miscibile on a molecular level, and the dipole-dipole interactions between C=O and C-Cl-2 and/or interpolymer hydrogen bondings between COOCH3 and CN and CCl groups play the role on the miscibility of the blends. It is found that the -CCl2- groups have two different chemical environments in the pure VDC-AN copolymer, which may result from the different configurations of the copolymer, such as -CCl2- groups in the ''alternating'' segments and -CCl2- groups in the ''blocky'' segments as proposed. It is the -CCl2- group in the ''alternating'' segment that takes part in the dipole-dipole interaction with C=O group in PMMA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compatibility and crystallization of tetrahydrofuran-methyl methacrylate diblock copolymer (PTHF-b-PMMA)/tetrahydrofuran homopolymer (PTHF) blends were studied. Our results showed that the crystallization and morphology of compatible PTHF-b-PMMA/PTHF

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme