983 resultados para MEMS vibration energy harvesters


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration based damage identification methods examine the changes in primary modal parameters or quantities derived from modal parameters. As one method may have advantages over the other under some circumstances, a multi-criteria approach is proposed. Case studies are conducted separately on beam, plate and plate-on-beam structures. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on flexibility and strain energy changes before and after damage are obtained and used as the indices for the assessment of the state of structural health. Results show that the proposed multi-criteria method is effective in damage identification in these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Axial loads of load bearing elements impact on the vibration characteristics. Several methods have been developed to quantify axial loads and hence axial deformations of individual structural members using their natural frequencies. Nevertheless, these methods cannot be applied to individual members in structural framing systems as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses modal strain energy phenomenon to quantify axial deformations of load bearing elements of structural framing systems. The procedure is illustrated through examples and results confirm that the proposed method has an ability to quantify the axial deformations of individual elements of structural framing systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modal strain energy method, which depends on the vibration characteristics of the structure, has been reasonably successful in identifying and localising damage in the structure. However, existing strain energy methods require the first few modes to be measured to provide meaningful damage detection. Use of individual modes with existing strain energy methods may indicate false alarms or may not detect the damage at or near the nodal points. This paper proposes a new modal strain energy based damage index which can detect and localize the damage using any one of the modes measured and illustrates its application for beam structures. It becomes evident that the proposed strain energy based damage index also has potential for damage quantification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic computer simulation techniques are used to develop and apply a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage localisation in beams and plates. Numerically simulated modal data obtained through finite element analyses are used to develop algorithms based on changes of modal flexibility and modal strain energy before and after damage and used as the indices for assessment of the state of structural health. The proposed procedure is illustrated through its application to flexural members under different damage scenarios and the results confirm its feasibility for damage assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.