997 resultados para MDTB and RET
Resumo:
Two pages on each leaf; collation of original: sig. A-I8 (fol. B8 wanting)
Resumo:
Signatures: pi² )(² A-X⁴. Leaves )(1-2 signed )(2-3.
Resumo:
Volumes for 1845- include reports of government officials, committees, and other documents, most of them with special title page and separate paging.
Resumo:
Parts for tenor I, tenor II, bass I, and bass II.
Resumo:
Photocopy. Ann Arbor, Mich. : University Microfilms International, 1980. -- 22 cm.
Resumo:
Plates engraved by Decker, Glotsch, Steinberger, Pfann, Montalegre, Beckh, Dehne, Delsenbach, Böllmann, Lindner and Krieger.
Resumo:
In Yiddish.
Resumo:
Familial hyperparathyroidism is not uncommon in clinical endocrine practice. It encompasses a spectrum of disorders including multiple endocrine neoplasia types 1 (MEN1) and 2A, hyperparathyroidism-jaw tumour syndrome (HPT-JT), familial hypocalciuric hypercalcaemia (FHH), and familial isolated hyperparathyroidism (FIHP). Distinguishing among the five syndromes is often difficult but has profound implications for the management of patient and family. The availability of specific genetic testing for four of the syndromes has improved diagnostic accuracy and simplified family monitoring in many cases but its current cost and limited accessibility require rationalisation of its use. No gene has yet been associated exclusively with FIHP. FIHP phenotypes have been associated with mutant MEN1 and calcium-sensing receptor ( CASR) genotypes and, very recently, with mutation in the newly identified HRPT2 gene. The relative proportions of these are not yet clear. We report results of MEN1, CASR, and HRPT2 genotyping of 22 unrelated subjects with FIHP phenotypes. We found 5 (23%) with MEN1 mutations, four (18%) with CASR mutations, and none with an HRPT2 mutation. All those with mutations had multiglandular hyperparathyroidism. Of the subjects with CASR mutations, none were of the typical FHH phenotype. These findings strongly favour a recommendation for MEN1 and CASR genotyping of patients with multiglandular FIHP, irrespective of urinary calcium excretion. However, it appears that HRPT2 genotyping should be reserved for cases in which other features of the HPT-JT phenotype have occurred in the kindred. Also apparent is the need for further investigation to identify additional genes associated with FIHP.
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Resumo:
While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.
In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.
By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.
Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.
Resumo:
Multiple endocrine neoplasia syndromes have since been classified as types 1 and 2, each with specific phenotypic patterns. MEN1 is usually associated with pituitary, parathyroid and paraneoplastic neuroendocrine tumours. The hallmark of MEN2 is a very high lifetime risk of developing medullary thyroid carcinoma (MTC) more than 95% in untreated patients. Three clinical subtypesdMEN2A, MEN2B, and familial MTC (FMTC) have been defined based on the risk of pheochromocytoma, hyperparathyroidism, and the presence or absence of characteristic physical features). MEN2 occurs as a result of germline activating missense mutations of the RET (REarranged during Transfection) proto-oncogene. MEN2-associated mutations are almost always located in exons 10, 11, or 13 through 16. Strong genotype-phenotype correlations exist with respect to clinical subtype, age at onset, and aggressiveness of MTC in MEN2. These are used to determine the age at which prophylactic thyroidectomy should occur and whether screening for pheochromocytoma or hyperparathyroidism is necessary. Specific RET mutations can also impact management in patients presenting with apparently sporadic MTC. Therefore, genetic testing should be performed before surgical intervention in all patients diagnosed with MTC. Recently, Pellegata et al. have reported that germline mutations in CDKN1B can predispose to the development of multiple endocrine tumours in both rats and humans and this new MEN syndrome is named MENX and MEN4, respectively. CDKN1B. A recent report showed that in sporadic MTC, CDKN1B V109G polymorphism correlates with a more favorable disease progression than the wild-type allele and might be considered a new promising prognostic marker. New insights on MEN syndrome pathogenesis and related inherited endocrine disorders are of particular interest for an adequate surgical and therapeutic approach.
Resumo:
Lung cancer is an heterogeneous disease, with 1-2% of rare histology. New molecular profiling technologies, such as next generation sequencing (NGS), haverevolutionized the assessment of molecular alteration in clinical practice. We analyzed a cohort of 1408 NSCLC-A patients treated at the Sant'Orsola- Malpighi University Hospital from 2019 to 2021. This analysis was performed using the oncomine focus thermo fischer panel. Of them, 410 (29%) had rare alteration (RET 3%, NTRK 0,2%,FGFR1 2%, MET exon14 skipping 3%, BRAF V600 4%, ALK fusion EGFR exon 20 2%) and 36 (2%)had a uncommon mutation. We enrolled 7 RET- rearranged patients in CRETA and J2G-MC-JZJC clinical trials assessing respectively unselective and selective RET-inhibitors , another 7 patients tested positive for the BRAF V6006 mutation and have been enrolled in the Array clinical trial assessing a novel combination of anti-BRAF and anti-mek agents . Other molecular alterations found are KRAS (Gly12Cys), FGFR1-4 mutation, MET skipping ex14 mutations, respectively eligible for other ongoing open studies such as Amgen 20190009 comparing efficacy of sotorasib vs docetaxel, Fight-207 assessing activity of pemigatinib and CINC280J12201 assessing activity of the novel met inhibitor capmatinib. In 2018 we joined the CHANCE clinical trial,a multicenter study evaluating the efficacy and safety of atezolizumab in patients withrare lung cancer histologies where and 14 patients have been so far enrolled in the Bologna site. Our studies underline the need of tailored approach to NSCLC patients and our results showed that precision medicine is feasible and is an effective approach to cancer treatment.
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.
Resumo:
Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.
Resumo:
The aim of this study was to evaluate the structural and molecular effects of antiangiogenic therapies and finasteride on the ventral prostate of senile mice. 90 male FVB mice were divided into: Young (18 weeks old) and senile (52 weeks old) groups; finasteride group: finasteride (20mg/kg); SU5416 group: SU5416 (6 mg/kg); TNP-470 group: TNP-470 (15 mg/kg,) and SU5416+TNP-470 group: similar to the SU5416 and TNP-470 groups. After 21 days, prostate ventral lobes were collected for morphological, immunohistochemical and Western blotting analyses. The results demonstrated atrophy, occasional proliferative lesions and inflammatory cells in the prostate during senescence, which were interrupted and/or blocked by treatment with antiangiogenic drugs and finasteride. Decreased AR and endostatin reactivities, and an increase for ER-α, ER-β and VEGF, were seen in the senile group. Decreased VEGF and ER-α reactivities and increased ER-β reactivity were verified in the finasteride, SU5416 groups and especially in SU5416+TNP-470 group. The TNP-470 group showed reduced AR and ER-β protein levels. The senescence favored the occurrence of structural and/or molecular alterations suggesting the onset of malignant lesions, due to the imbalance in the signaling between the epithelium and stroma. The SU5416+TNP-470 treatment was more effective in maintaining the structural, hormonal and angiogenic factor balance in the prostate during senescence, highlighting the signaling of antiproliferation via ER-β.