902 resultados para Lung Transplantation
Resumo:
Implantation of a ventricular assist device (VAD) reduces short-term mortality and morbidity and provides patients with reasonable quality of life even though it may also be a long-lasting emotional burden. This study was conducted to analyze the long-time emotional consequences of VAD implantation, followed by heart transplantation in patients and spouses.
Resumo:
For the first time in the literature to date, we report 2 cases of transplantation of yeast-infected cardiac allografts. In both cases, endocardial vegetations were observed before graft implantation. Microbiologic samples grew yeasts: Rhodotorula glutinis was found close to the left atrial appendage in the first case and Candida parapsilosis was identified in a vegetation located at the base of the tricuspid valve in the second case. We discuss the possible routes of donor organ infection and management of these 2 unusual cases.
Resumo:
BACKGROUND: Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. METHODS: Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4 degrees C and 50 min of reperfusion at 37 degrees C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. RESULTS: Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases (CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 microm3(0.10)) and CE+S (481 microm3(0.10)) compared with controls (323 microm3(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05). CONCLUSION: Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.
Resumo:
BACKGROUND: Outcome after lung transplantation (LTx) is affected by the onset of bronchiolitis obliterans syndrome (BOS) and lung function decline. Reduced health-related quality of life (HRQL) and physical mobility have been shown in patients developing BOS, but the impact on the capacity to walk is unknown. We aimed to compare the long-term HRQL and 6-minute walk test (6MWT) between lung recipients affected or not by BOS Grade > or =2. METHODS: Fifty-eight patients were prospectively followed for 5.6 +/- 2.9 years after LTx. Assessments included the St George's Respiratory Questionnaire (SGRQ) and the 6MWT, which were performed yearly. Moreover, clinical complications were recorded to estimate the proportion of the follow-up time lived without clinical intercurrences after transplant. Analyses were performed using adjusted linear regression and repeated-measures analysis of variance. RESULTS: BOS was a significant predictor of lower SGRQ scores (p < 0.01) and reduced time free of clinical complications (p = 0.001), but not of 6MWT distance (p = 0.12). At 7 years post-transplant, results were: 69.0 +/- 21.8% vs 86.9 +/- 5.6%, p < 0.05 (SGRQ); 58.5 +/- 21.6% vs 88.7 +/- 11.4%, p < 0.01 (proportion of time lived without clinical complications); and 82.2 +/- 10.9% vs 91.9 +/- 14.2%, p = 0.27 (percent of predicted 6MWT), respectively, for patients with BOS and without BOS. CONCLUSIONS: Despite significantly less time lived without clinical complications and progressive decline of self-reported health status, the capacity to walk of patients affected by BOS remained relatively stable over time. These findings may indicate that the development of moderate to severe BOS does not prevent lung recipients from walking independently and pursuing an autonomous life.
Resumo:
BACKGROUND: Reperfusion injury is the leading cause of early graft dysfunction after lung transplantation. Activation of neutrophilic granulocytes with generation of free oxygen radicals appears to play a key role in this process. The efficacy of ascorbic acid as an antioxidant in the amelioration of reperfusion injury after lung transplantation has not been studied yet. METHODS: An in situ autotransplantation model in sheep is presented. The left lung was flushed (Euro-Collins solution) and reperfused; after 2 hours of cold storage, the right hilus was then clamped (group R [reference], n = 6). Group AA animals (n = 6) were treated with 1 g/kg ascorbic acid before reperfusion. Controls (group C, n = 6) underwent hilar preparation and instrumentation only. RESULTS: In group R, arterio-alveolar oxygen difference (AaDO2) and pulmonary vascular resistance (PVR) were significantly elevated after reperfusion. Five of 6 animals developed frank alveolar edema. All biochemical parameters showed significant PMN activation. In group AA, AaDO2, PVR, work of breathing, and the level of PMN activation were significantly lower. CONCLUSIONS: The experimental model reproduces all aspects of lung reperfusion injury reliably. Ascorbic acid was able to weaken reperfusion injury in this experimental setup.
Resumo:
OBJECTIVE: Reperfusion injury is the main reason for early graft failure after lung transplantation. Inhibition of the adherence of polymorphonuclear leukocytes to activated endothelium by blocking L- and E-selectins (antibody EL-246) could potentially inhibit reperfusion injury. METHODS: Reperfusion injury was induced in a left lung autotransplant model in sheep. After hilar stripping the left lung was flushed with Euro-Collins solution and preserved for 2 h in situ at 15 degrees C. After reperfusion right main bronchus and pulmonary artery were occluded leaving the animal dependent on the reperfused lung (control, n = 6). Pulmonary function was assessed by alveolo-arterial oxygen difference (AaDO2) and pulmonary vascular resistance (PVR), the chemiluminescence of isolated neutrophils, as well as the release of beta-N-acetyl-glucosaminidase (beta-NAG) served as indicator of neutrophilic activation. Extravascular lung water was an indicator for pulmonary edema formation. EL-246 group animals (n = 6) were treated additionally with 1 mg/kg BW of EL-246 given prior and during reperfusion. RESULTS: After 3 h of reperfusion five control animals developed alveolar edema compared to one animal in the EL-246 group (P = 0.08). AaDO2 (mm Hg) was significantly higher in the control compared to the EL-246 group (510 +/- 148 vs. 214 +/- 86). PVR (dyn x s x cm(-5)) was significantly increased in the control compared to the EL-246 group (656 +/- 240 vs. 317 +/- 87). Neutrophilic activation was significantly lower in the EL-246 group. Extravascular lung water was significantly lower compared to control (6.88 +/- 1.0 vs. 13.4 +/- 2.8 g/g blood-free lung weight). CONCLUSIONS: Treatment with EL-246 results in improved pulmonary function and less in vivo PMN activation in this experimental model. Further studies are necessary to evaluate the possible role of selectin blockade in amelioration of reperfusion injury in human lung transplantation.
Resumo:
BACKGROUND: We report mid-term results after 25 consecutive lung volume reduction operations (LVRS) for the treatment of severe dyspnea due to advanced emphysema. METHODS: Study design: patients were studied prospectively up to 12 months after surgery. Setting: preoperative evaluation, surgery and postoperative care took place in our university hospital. Patients: patient selection was based on severe dyspnea and airway obstruction despite optimal medical treatment, lung overinflation and completed rehabilitation programme. Patients with severe hypercarbia (PCO2>50 mmHg) were excluded. Nineteen rehabilitated patients who fulfilled our inclusion criteria but postponed or denied LVRS were followed up clinically. Interventions: LVRS was performed bilaterally in 22 patients (median sternotomy) and unilaterally in 3 patients (limited thoracotomy). Measures: Outcome was measured by dyspnea evaluation, 6-minute-walking distance and pulmonary function tests. RESULTS: Twelve months postoperatively dyspnea and mobility improved significantly (MRC score from 3.3+/-0.7 to 2.12+/-0.8, 6-min-walk from 251+/-190 to 477+/-189 m). These results were superior compared to the results of the conservatively treated patients. Significant improvement could also be documented in airway obstruction (FEV1 from 960+/-369 to 1438+/-610 ml) and overinflation (TLC from 133+/-14 to 118+/-21% predicted and RV from 280+/-56 to 186+/-59% predicted). CONCLUSIONS: LVRS is an effective and promising treatment option for selected patients with end-stage emphysema and could be offered as an alternative and / or bridge to lung transplantation.
Resumo:
OBJECTIVE: To report preliminary results with a new surgical method of treating terminal emphysema by bilateral reduction of lung volume. PATIENTS AND METHODS: In a prospective study, the results obtained with the first 20 consecutive patients (mean FEV1: 590 +/- 180 ml) who underwent operative reduction of lung volume were recorded. 19 of the 20 patients had required continuous oxygen supply. RESULTS: The patients were extubated 8.5 +/- 6 h postoperatively; thoracic drainage was removed after 9 +/- 6 days. The degree of dyspnoea was decreased in all patients (3.5 +/- 0.5 vs 0.5 +/- 0.1). Significant reduction of overinflation occurred soon after the operation (residual volume 273 +/- 125 to 201 +/- 107% of normal; total capacity from 142 +/- 18 to 109 +/- 22% of normal), as well as reduction in the degree of obstruction (FEV1 from 18 +/- 6 to 24 +/- 7% of normal; for each, P < 0.05). One patient died 3 weeks post-operatively of Candida infection. CONCLUSION: The method looks promising for the treatment of selected patients and may thus provide an alternative to lung transplantation.
Resumo:
In ongoing chronic rejection after lung transplantation, alveolar interstitial fibrosis develops. However, little is known about the mechanisms involved. In order to investigate these mechanisms, expression of extracellular matrix molecules (ECM) (undulin, decorin, tenascin, laminin, and fibronectin) and cytokines [transforming growth factor (TGF)-beta 1, TGF-beta 3, platelet-derived growth factor (PDGF), and PDGF receptor] were semiquantitatively evaluated in chronically rejected lung allografts, using standard immunohistochemical techniques. Additionally, the presence of macrophages was analysed. The present study demonstrates an increased infiltration of macrophages with a concomitant upregulation of cytokines (TGF-beta 1, TGF-beta 3, and PDGF) and an increased deposition of ECM in chronic lung rejection. These cytokines have an important role in the stimulation of fibroblasts which are a major source of ECM. Upregulated expression of ECM in the alveolar interstitial space leads to alveolar malfunction by thickening of the wall and, thus, is one of the causative factors of respiratory dysfunction in chronic lung graft rejection.
Resumo:
OBJECTIVE: Euro-Collins solution (EC) is routinely used in lung transplantation. The high potassium of EC, however, may damage the vascular endothelium, thereby contributing to postischemic reperfusion injury. To assess the influence of the potassium concentration on lung preservation, we evaluated the effect of a "low potassium Euro-Collins solution" (LPEC), in which the sodium and potassium concentrations were reversed. METHODS: In an extracorporeal rat heart-lung model lungs were preserved with EC and LPEC. The heart-lung blocks (HLB) were perfused with Krebs-Henseleit solution containing washed bovine red blood cells and ventilated with room air. The lungs were perfused via the working right ventricle with deoxygenated perfusate. Oxygenation and pulmonary vascular resistance (PVR) were monitored. After baseline measurements, hearts were arrested with St. Thomas' solution and the lungs were perfused with EC or LPEC, or were not perfused (controls). The HLBs were stored for 5 min or 2 h ischemic time at 4 degrees C. Reperfusion and ventilation was performed for 40 min. At the end of the trial the wet/dry ratio of the lungs was calculated and light microscopic assessment of the degree of edema was performed. RESULTS: After 5 min of ischemia oxygenation was significantly better in both preserved groups compared to the controls. Pulmonary vascular resistance was elevated in all three groups after 30 min reperfusion at both ischemic times. After 2 h of ischemia PVR of the group preserved with LPEC was significantly lower than those of the EC and controls (LPEC-5 min: 184 +/- 65 dynes * sec * cm-5, EC-5 min: 275 +/- 119 dynes * sec * cm * cm-5, LPEC-2 h: 324 +/- 47 dynes * sec * m-5, EC-2 h: 507 +/- 83 dynes * sec * cm-5). Oxygenation after 2 h of ischemia and 30 min reperfusion was significantly better in the LPEC group compared to EC and controls (LPEC: 70 +/- 17 mmHg, EC: 44 +/- 3 mmHg). The wet/dry ratio was significantly lower in the two preserved groups compared to controls (LPEC-5 min: 5.7 +/- 0.7, EC-5 min: 5.8 +/- 1.2, controls-5 min: 7.5 +/- 1.8, LPEC-2 h: 6.7 +/- 0.4, EC: 6.9 +/- 0.4, controls-2 h: 7.3 +/- 0.4). CONCLUSIONS: We thus conclude that LPEC results in better oxygenation and lower PVR in this lung preservation model. A low potassium concentration in lung preservation solutions may help in reducing the incidence of early graft dysfunction following lung transplantation.
Resumo:
BACKGROUND: Lung volume reduction (LVR) surgery is an effective and organ-preserving treatment option for patients suffering from severe dyspnea due to endstage emphysema. METHOD: Resection of functionally inactive lung parenchyma reduces over-inflation and restores the elastic recoil of the lungs. Thus it results in improvement of dyspnea, mobility and pulmonary function. Patient selection is crucial. Of simliar importance is pulmonary rehabilitation, as well as sufficient expertise in the treatment of endstage chronic respiratory failure. RESULTS AND CONCLUSION: The in-hospital morbidity and mortality after LVR are acceptable (0 to 5%) and the good results seem to last at least 18 to 24 months. LVR can be offered to selected patients either as an alternative or as bridge to lung transplantation.
Resumo:
BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.
Resumo:
BACKGROUND: The burden of enterococcal infections has increased over the last decades with vancomycin-resistant enterococci (VRE) being a major health problem. Solid organ transplantation is considered as a risk factor. However, little is known about the relevance of enterococci in solid organ transplantation recipients in areas with a low VRE prevalence. METHODS: We examined the epidemiology of enterococcal events in patients followed in the Swiss Transplant Cohort Study between May 2008 and September 2011 and analyzed risk factors for infection, aminopenicillin resistance, treatment, and outcome. RESULTS: Of the 1234 patients, 255 (20.7%) suffered from 392 enterococcal events (185 [47.2%] infections, 205 [52.3%] colonizations, and 2 events with missing clinical information). Only 2 isolates were VRE. The highest infection rates were found early after liver transplantation (0.24/person-year) consisting in 58.6% of Enterococcus faecium. The highest colonization rates were documented in lung transplant recipients (0.33/person-year), with 46.5% E. faecium. Age, prophylaxis with a betalactam antibiotic, and liver transplantation were significantly associated with infection. Previous antibiotic treatment, intensive care unit stay, and lung transplantation were associated with aminopenicillin resistance. Only 4/205 (2%) colonization events led to an infection. Adequate treatment did not affect microbiological clearance rates. Overall mortality was 8%; no deaths were attributable to enterococcal events. CONCLUSIONS: Enterococcal colonizations and infections are frequent in transplant recipients. Progression from colonization to infection is rare. Therefore, antibiotic treatment should be used restrictively in colonization. No increased mortality because of enterococcal infection was noted
Resumo:
Liver transplantation recipients, like other solid organ transplantation recipients, have an increased risk of dermatologic problems due to their long-term immunosuppression and benefit from pre-and post-transplantation screenings, and management by a dermatologist and dermatologic care should be integrated into the comprehensive, multidisciplinary care of liver transplantation recipients [1,2]. Cutaneous findings include aesthetic alterations, infections, precancerous lesions, and malignancies. The severity of skin alterations ranges from benign, unpleasant changes to life-threatening conditions [3-5]. In addition to skin cancer diagnosis and management, visits with a dermatologist serve to educate and improve the patient's sun-protection behavior. Among all solid organ transplantations, liver transplantation requires the least amount of immunosuppression, sometimes even permitting its complete cessation [6]. As a result, patients who have undergone liver transplantation tend to have fewer dermatologic complications compared with other solid organ transplantation recipients [7]. However, due to the large volume of the liver, patients undergoing liver transplantation receive more donor lymphocytes than kidney, heart, or lung transplantation recipients. Because of the immunosuppression, the transplanted lymphocytes proliferate and rarely trigger graft-versus-host-disease [8,9]. This topic will provide an overview of dermatologic disorders that may be seen following liver transplantation. A detailed discussion of skin cancer following solid organ transplantation and the general management of patients following liver transplantation are discussed separately. (See "Development of malignancy following solid organ transplantation" and "Management of skin cancer in solid organ transplant recipients" and "Long-term management of adult liver transplant recipients".)
Resumo:
Transcatheter aortic valve implantation is a feasible therapeutic option for selected patients with severe aortic stenosis and high or prohibitive risk for standard surgery. Lung transplant recipients are often considered high-risk patients for heart surgery because of their specific transplant-associated characteristics and comorbidities. We report a case of successful transfemoral transcatheter aortic valve replacement in a lung transplant recipient with a symptomatic severe aortic stenosis, severe left ventricular dysfunction, and end-stage renal failure 9 years after bilateral lung transplantation.