946 resultados para Luciferin-binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A protein which binds specifically to [3H]-zeatin has been isolated from cucumber cotyledons by chromatographic techniques. Its binding to [3H]-zeatin was inhibited remarkably by the addition of non-radioactive cytokinins and the order of inhibition was zeatin > -zeatin riboside > N6-(Delta2-isopentenyl)adenine > N6-(Delta2-isopentenyl)adenosine > N6-benzyl-adenosine > kinetin riboside. This protein behaved as a soluble protein with an apparent molecular size of 43,000 daltons on gel filtration through calibrated Sephadex G-100 column. The dissociation constant, Kd, of the protein-zeatin complex was about 4 × 10–7 M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies raised against human serum retinol-binding protein (hRBP) were used as probes for the study of the antigenic determinants of hRBP and those shared with the same protein from other species. The antibodies could be classified into four distinct groups and react with the homologous proteins from the rat as well as the rabbit sera. Three of these antibodies recognize sequential or continuous epitopes while the remaining antibody is directed against a discontinuous or conformational epitope. By chemical cleavage with cyanogen bromide, the domains recognized by the monoclonal antibodies could be delineated. By solid-phase synthetic approach, the core sequences recognized by two of these monoclonal antibodies were identified to amino acid sequences 45–51 and 128–131 of the primary amino acid sequence of hRBP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma is the most common and malignant form of primary astrocytoma. Upon investigation of the insulin-like growth factor (IGF) pathway, we found the IGF2BP3/IMP3 transcript and protein to be up-regulated in GBMs but not in lower grade astrocytomas (p<0.0001). IMP3 is an RNA binding protein known to bind to the 5'-untranslated region of IGF-2 mRNA, thereby activating its translation. Overexpression-and knockdown-based studies establish a role for IMP3 in promoting proliferation, anchorage-independent growth, invasion, and chemoresistance. IMP3 overexpressing B16F10 cells also showed increased tumor growth, angiogenesis, and metastasis, resulting in poor survival in a mouse model. Additionally, the infiltrating front, perivascular, and subpial regions in a majority of the GBMs stained positive for IMP3. Furthermore, two different murine glioma models were used to substantiate the above findings. In agreement with the translation activation functions of IMP3, we also found increased IGF-2 protein in the GBM tumor samples without a corresponding increase in its transcript levels. Also, in vitro IMP3 overexpression/knockdown modulated the IGF-2 protein levels without altering its transcript levels. Additionally, IGF-2 neutralization and supplementation studies established that the proproliferative effects of IMP3 were indeed mediated through IGF-2. Concordantly, PI3K and MAPK, the downstream effectors of IGF-2, are activated by IMP3 and are found to be essential for IMP3-induced cell proliferation. Thus, we have identified IMP3 as a GBM-specific proproliferative and proinvasive marker acting through IGF-2 resulting in the activation of oncogenic PI3K and MAPK pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different DNA-binding proteins have different interaction modes with DNA. Sequence-specific DNA protein interaction has been mostly associated with regulatory processes inside a cell, and as such extensive studies have been made. Adequate data is also available on nonspecific DNA protein interaction, as an intermediate to protein's search for its cognate partner. Multidomain nonspecific DNA protein interaction involving physical sequestering of DNA has often been implicated to regulate gene expression indirectly. However, data available on this type of interaction is limited. One such interaction is the binding of DNA with mycobacterium DNA binding proteins. We have used the Langmuir-Blodgett technique to evaluate for the first time the kinetics and thermodynamics of Mycobacterium smegmatis Dps 1 binding to DNA. By immobilizing one of the interacting partners, we have shown that, when a kinetic bottleneck is applied, the binding mechanism showed cooperative binding (n = 2.72) at lower temperatures, but the degree of cooperativity gradually reduces (n = 1.38) as the temperature was increased We have also compared the kinetics and thermodynamics of sequence-specific and nonspecific DNA protein interactions under the same set of conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seven double cysteine mutants of maltose binding protein (MBP) were generated with one each in the active cleft at position 298 and the second cysteine distributed over both domains of the protein. These cysteines were spin labeled and distances between the labels in biradical pairs determined by pulsed double electron-electron resonance (DEER) measurements. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structure of MBP without maltose and were found to be in excellent agreement. MBP is in a molten globule state at pH 3.3 and is known to still bind its substrate maltose. The nitroxide spin label was sufficiently stable under these conditions. In preliminary experiments, DEER measurements were carried out with one of the mutants yielding a broad distance distribution as was to be expected if there is no explicit tertiary structure and the individual helices pointing into all possible directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin like growth factor binding protein 4 (IGFBP4) regulates growth and development of tissues and organs by negatively regulating IGF signaling. Among most cancers, IGFBP4 has growth inhibitory role and reported as a down-regulated gene, except for renal cell carcinoma, wherein IGFBP4 promotes tumor progression. IGFBP4 expression has been shown to be higher in increasing grades of astrocytoma. However, the functional role of IGFBP4 in gliomas has not been explored. Surgical biopsies of 20 normal brain and 198 astrocytoma samples were analyzed for IGFBP4 expression by qRT-PCR. Highest expression of IGFBP4 mRNA was seen in GBM tumors compared to control brain tissues (median log2 of 2.035, p < 0.0001). Immunohistochemical analysis of 53 tissue samples revealed predominant nuclear staining of IGFBP4, seen maximally in GBMs when compared to DA and AA tumors (median LI = 29.12 +/- A 16.943, p < 0.001). Over expression of IGFBP4 in U343 glioma cells resulted in up-regulation of molecules involved in tumor growth, EMT and invasion such as pAkt, pErk, Vimentin, and N-cadherin and down-regulation of E-cadherin. Functionally, IGFBP4 over expression in these cells resulted in increased proliferation, migration and invasion as assessed by MTT, transwell migration, and Matrigel invasion assays. These findings were confirmed upon IGFBP4 knockdown in U251 glioma cells. Our data suggest a pro-tumorigenic role for IGFBP4 in glioma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Heat shock factor binding protein (HSBP) was originally discovered in a yeast two-hybrid screen as an interacting partner of heat shock factor (HSF). It appears to be conserved in all eukaryotes studied so far, with yeast being the only exception. Cell biological analysis of HSBP in mammals suggests its role as a negative regulator of heat shock response as it appears to interact with HSF only during the recovery phase following exposure to heat stress. While the identification of HSF in the malaria parasite is still eluding biologists, this study for the first time, reports the presence of a homologue of HSBP in Plasmodium falciparum. Methods: PfHSBP was cloned and purified as his-tag fusion protein. CD (Circular dichroism) spectroscopy was performed to predict the secondary structure. Immunoblots and immunofluorescence approaches were used to study expression and localization of HSBP in P. falciparum. Cellular fractionation was performed to examine subcellular distribution of PfHSBP. Immunoprecipitation was carried out to identify HSBP interacting partner in P. falciparum. Results: PfHSBP is a conserved protein with a high helical content and has a propensity to form homo-oligomers. PfHSBP was cloned, expressed and purified. The in vivo protein expression profile shows maximal expression in trophozoites. The protein was found to exist in oligomeric form as trimer and hexamer. PfHSBP is predominantly localized in the parasite cytosol, however, upon heat shock, it translocates to the nucleus. This study also reports the interaction of PfHSBP with PfHSP70-1 in the cytoplasm of the parasite. Conclusions: This study emphasizes the structural and biochemical conservation of PfHSBP with its mammalian counterpart and highlights its potential role in regulation of heat shock response in the malaria parasite. Analysis of HSBP may be an important step towards identification of the transcription factor regulating the heat shock response in P. falciparum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of beta 1-beta 1'-beta 2-beta 3-alpha-beta 4-beta 45(1)-beta 45(2)-beta 5 secondary structure elements. MtuSSB NTD includes an additional beta-strand (beta 6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Delta ssb strain. However, a chimeric SSB (m beta 4-beta 5), wherein only the terminal part of NTD (beta 4-beta 5 region possessing L-45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The m beta 4-beta 6 construct obtained by substitution of the region downstream of beta 5 in m beta 4-beta 5 SSB with the corresponding region (beta 6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L-45 loop and the beta 6 strand of MtuSSB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent infection of hepatitis C virus (HCV) can lead to liver cirrhosis and hepatocellular carcinoma, which are currently diagnosed by invasive liver biopsy. Approximately 15-20% of cases of chronic liver diseases in India are caused by HCV infection. In North India, genotype 3 is predominant, whereas genotype 1 is predominant in southern parts of India. The aim of this study was to identify differentially regulated serum proteins in HCV-infected Indian patients (genotypes 1 and 3) using a two-dimensional electrophoresis approach. We identified eight differentially expressed proteins by MS. Expression levels of one of the highly upregulated proteins, retinol-binding protein 4 (RBP4), was validated by ELISA and Western blotting in two independent cohorts. We also confirmed our observation in the JFH1 infectious cell culture system. Interestingly, the HCV core protein enhanced RBP4 levels and partial knockdown of RBP4 had a positive impact on HCV replication, suggesting a possible role for this cellular protein in regulating HCV infection. Analysis of RBP4-interacting partners using a bioinformatic approach revealed novel insights into the possible involvement of RBP4 in HCV-induced pathogenesis. Taken together, this study provided information on the proteome profile of the HCV-infected Indian population, and revealed a link between HCV infection, RBP4 and insulin resistance.