911 resultados para Lower Crust


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gabbroic xenoliths and diverse megacrysts (e.g., clinopyroxenes, amphiboles and plagioclases), which correspond to the lithology ranging from gabbro-norite to gabbro, occur in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The gabbroic xenoliths consist primarily of moderate-K2O plagioclase, Ti-Al-rich clinopyroxene and CaO-rich orthopyroxene; additionally, TiO2-rich amphibole (kaersutite) and Ti-Fe oxides might or might not be present. The plagioclase is the most dominant phase (approx. 60-70 vol.%). The xenoliths and megacrysts provide evidence for the modal metasomatism of the lower continental crust by the mafic magmas during the Pleistocene. The coarse grain size (up to 5 mm), moderate Mg# [=100xMg/(Mg+Fe(total)) atomic ratio] of pyroxenes (70-77) and textural features (e.g., poikilitic) indicate that the gabbroic xenoliths are consistent with a cumulus origin. The clinopyroxenes from these xenoliths are enriched in REE with smooth convex-upward MREE patterns, which are expected for cumulus minerals formed from a melt enriched in incompatible trace elements. The strikingly similar major and trace element variations and the patterns of constituent minerals clearly indicate a genetic link between the gabbroic xenoliths (plus megacrysts) and the host basalt, indicating that the xenoliths belong to the Jeju Pleisto-Holocene magma system. On the basis of the textural features, the mineral equilibria and the major and trace element variations, the xenoliths appear to have crystallized from basaltic melts at the reservoir-roof environment within the lower crust (4-7 kbars) above the present Moho estimates beneath Jeju Island, where the xenoliths represent wall rocks. Following the consolidation of the xenolith lithologies, volatile- and incompatible element-enriched melt/fluid, as metasomatic agents, infiltrated through the grain boundaries and/or cracks and reacted with the preexisting anhydrous phases, which produced the metasomatic amphiboles. This volatile-enriched melt/fluid could have evolved from the initially anhydrous compositions to the volatile-saturated compositions by the active fractional crystallization in the Jeju Pleisto-Holocene magma system. This process was significant in that it was a relatively young event and played an important role in the formation of the hydrous minerals and the metasomatization of the lower continental crust, which is a plume-impacted area along the Asian continental margin. The major and trace element analyses of the mineral phases from the xenoliths were performed to define the principal geochemical characteristics of the crustal lithosphere segment represented by the studied xenoliths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the major, rare earth, and other trace element compositions of clinopyroxenes from two Leg 140, Hole 504B diabase dikes. These pyroxenes reflect a complex history of crystal growth and magma evolution. The large ranges of composition found reflect incorporation of exotic phenocrysts into the melt, the early formation of crystal clots before dike intrusion during an undercooling event, and in-situ fractionation of melt during and following dike emplacement. Some of the pyroxenes occur in coarse two- and three-phase glomerocrysts, which may be ôprotogabbrosö representing early stages of melt crystallization in the lower crust. Large variations in trace element composition are found. These likely reflect heterogeneous nucleation and growth of plagioclase and pyroxene in the melt, as well as complex interface kinetics that may affect partition coefficients during rapid crystal growth expected during undercooling. This can explain the formation of irregular chemical sector zoning in some equant anhedral phenocrysts. Undercooling of magmas in the lower crust most likely reflects input of fresh hot melt into a stagnating melt-storage zone. Dikes intruded upward from an inflated melt-storage zone during such a cycle are likely to be larger than those intruded from the storage zone between such cycles, when it would be deflated, consistent with the greater overall thickness of the phyric dikes in the Leg 140 section of Hole 504B.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg + Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca + Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti-rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B. This suggests that a significant mass fraction of more evolved products is needed to balance the high Mg# of the bulk hole. Calculations show that 25%-45% of average Eastern Atlantis II Fracture Zone basalt is needed to combine with 55%-75% of bulk Hole 735B rocks to give a melt of Mg# 0.637, parental to the most primitive Hole 735B cumulate. On the other hand, the parental melt with Mg# 0.637 is far too evolved to be in equilibrium with residual mantle olivine of Fo > 0.89. Therefore, a significant mass fraction of more primitive cumulate (e.g., high Mg# dunite and troctolite) is yet to be sampled. This hidden cumulate could well be deep in the lower crust or simply in the mantle section. We favor the latter because of the thickened cold thermal boundary layer atop the mantle beneath slow-spreading ridges, where cooling and crystallization of ascending mantle melts is inevitable. These observations and data interpretation require reconsideration of the popular concept of primary mantle melts and relationships among the extent of mantle melting, melt production, and the composition and thickness of igneous crust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New maps of free-air and the Bouguer gravity anomalies on the Weddell Sea sector (70-81° S, 6-75° W) of Antarctica are presented. These maps are based on the first computer compilation of available gravity data collected by ''Sevmorgeologia'' in 1976-89 in the southern Weddell Sea and adjacent coasts of western Dronning Maud Land (WDML) and Coats Land. The accomplished gravity studies comprise airborne observations with a line spacing of about 20 km and conventional measurements at over-the-ice points, which were spaced at 10-30 km and supplemented by seismic soundings. Hence, anomalies on the maps represent mainly large-scale and deep crustal features. The dominant feature in free-air gravity map is a large dipolar gravity anomaly stretching along the continental margin. Following the major grain of seabed morphology this shelf-edge/slope anomaly (SESA) is clearly divided into three segments characterized by diverse anomaly amplitudes, wavelengths and trends. They are associated with continental margins of different geotectonic provinces of Antarctica surrounding the Weddell Sea. Apparent distinctions in the SESA signatures are interpreted as the gravity expression of tectonic, deep crustal structure segmentation of the continental margin. The prominent gravity highs (100-140 mGal) of the shelf edge anomaly mapped along WDML are assumed to represent high-density mantle injections intruded into the middle/lower crust during initial rifting of continental breakup. Enlarged wavelengths and diminished amplitudes of the gravity anomaly westwards, along the Weddell Sea embayment (WSE) margin, reflect a widening of the continental slope and a significant increase in thickness of underlying sediment strata. Low amplitude, negative free-air anomalies in the Filchner-Ronne Ice Shelves (FRIS) contrast sharply with the dominating positive anomalies offshore. This indicates a greater sedimentary thickness of the basin in this area. Crustal response to the enlarged sediment load is impressed in mostly positive features of the Bouguer gravity field observed here. Two pronounced positive Bouguer anomalies of 50-70 mGal and an average widths of 200 km dominate the Weddell Sea embayment margins towards the Antarctic Peninsula and the East Antarctic craton. They correlate well with very deep seabed troughs (> 1000 m below sea level). The gravity highs are most likely caused by a shallow upper mantle underneath graben-rift structures evolved at the margins of the WSE basin. A regional zone (> 100 km in width) of the prominent Bouguer and free-air negative anomalies (-40 to -60 mGal) adjacent Coats Land to the north of the ice shelf edge may indicate the presence of the thick old cratonic crust far offshore beneath the Weddell Sea Embayment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gabbros drilled from the shallow (720 m) east wall of the Atlantis II transform on the Southwest Indian Ridge (SWIR; 32°43.40', 57°16.00') provide the most complete record of the stratigraphy and composition of the oceanic lower crust recovered from the ocean basins to date. Lithologies recovered include gabbro, olivine gabbro, troctolite, trondhjemite, and unusual iron-titanium (FeTi) oxide-rich gabbro containing up to 30% FeTi oxides. The plutonic rock sequence represents a tholeiitic fractionation trend ranging from primitive magmas having Mg numbers of 67 to 69 that fractionated troctolites, to highly evolved liquids that crystallized two-pyroxene, FeTi oxide-rich gabbros and, ultimately, trondhjemite. Isotopic compositions of unaltered Leg 118 gabbros are distinct from Indian Ocean mid-ocean ridge basalts (MORB) in having higher 143Nd/144Nd (0.51301-0.51319) and lower 206Pb/204Pb values (17.35-17.67); 87Sr/86Sr values (0.7025-0.7030) overlap those of SWIR basalts, but are generally lower than MORBs from the Southeast Indian Ridge or the Rodrigues Triple Junction. More than one magma composition may have been introduced into the magma chamber during its crystallization history, as suggested by the higher 87Sr/86Sr, 206Pb/204Pb, and lower 143Nd/144Nd values of chromium-rich olivine gabbros from the bottom of Hole 735B. Whole-rock gabbro and plagioclase mineral separate 87Sr/86Sr values are uniformly low (0.7027-0.7030), irrespective of alteration and deformation. By contrast, 87Sr/86Sr values for clinopyroxene (0.7025-0.7039) in the upper half of Hole 735B are higher than coexisting plagioclase and reflect extensive replacement of clinopyroxene by amphibole. Hydrothermal veins and breccias have elevated 87Sr/86Sr values (0.7029-0.7035) and indicate enhanced local introduction of seawater strontium. Oxygen- and hydrogen-isotope results show that secondary amphiboles have uniform dD values of -49 to -54 per mil and felsic hydrothermal veins range from -46 to - 77 per mil. Oxygen-isotope data for secondary amphibole and visibly altered gabbros range to low values (+1.0-+5.5 per mil), and O-isotope disequilibrium between coexisting pyroxene and plagioclase pairs from throughout the stratigraphic column indicates that seawater interacted with much of the gabbro section, but at relatively low water/rock ratios. This is consistent with the persistence of low 87Sr/86Sr values, even in gabbros that were extensively deformed and altered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the systematics of Cl, F and H2O in Izu arc front volcanic rocks using basaltic through rhyolitic glass shards and melt inclusions (Izu glasses) from Oligocene to Quaternary distal fallout tephra. These glasses are low-K basalts to rhyolites that are equivalent to the Quaternary lavas of the Izu arc front (Izu VF). Most of the Izu glasses have Cl ~400-4000 ppm and F ~70-400 ppm (normal-group glasses). Rare andesitic melt inclusions (halogen-rich andesites; HRA) have very high abundances of Cl (~6600-8600 ppm) and F (~780-910 ppm), but their contents of incompatible large ion lithophile elements (LILE) are similar to the normal-group glasses. The preeruptive H2O of basalt to andesite melt inclusions in plagioclase is estimated to range from ~2 to ~10 wt% H2O. The Izu magmas should be undersaturated in H2O and the halogens at their preferred levels of crystallization in the middle to lower crust (~3 to ~11 kbar, ~820° to ~1200°C). A substantial portion of the original H2O is lost due to degassing during the final ascent to surface. By contrast, halogen loss is minor, except for loss of Cl from siliceous dacitic and rhyolitic compositions. The behavior of Cl, F and H2O in undegassed melts resembles the fluid mobile LILE (e.g.; K, Rb, Cs, Ba, U, Pb, Li). Most of the Cl (>99%), H2O (>95%) and F (>53%) in the Izu VF melts appear to originate from the subducting slab. At arc front depths, the slab fluid contains Cl = 0.94+/-0.25 wt%, F = 990+/-270 ppm and H2O = 25+/-7 wt%. If the subducting sediment and the altered basaltic crust were the only slab sources, then the subducted Cl appears to be almost entirely recycled at the Izu arc (~77-129%). Conversely, H2O (~13-22% recycled at arc) and F (~4-6% recycled) must be either lost during shallow subduction or retained in the slab to greater depths. If a seawater-impregnated serpentinite layer below the basaltic crust were an additional source of Cl and H2O, the calculated percentage of Cl and H2O recycled at arc would be lower. Extrapolating the Izu data to the total length of global arcs (~37000 km), the global arc outflux of fluid-recycled Cl and H2O at subduction zones amounts to Cl ~2.9-3.8 mln ton/yr and H2O ~70-100 mln ton/yr, respectively - comparable to previous estimates. Further, we obtain a first estimate of global arc outflux of fluid-recycled F of ~0.3-0.4 mln ton/yr. Despite the inherent uncertainties, our results support models suggesting that the slab becomes strongly depleted in Cl and H2O in subduction zones. In contrast, much of the subducted F appears to be returned to the deep mantle, implying efficient fractionation of Cl and H2O from F during the subduction process. However, if slab devolatilization produces slab fluids with high Cl/F (~9.5), slab melting will still produce components with low Cl/F ratios (~0.9), similar to those characteristic of the upper continental crust (Cl/F ~0.3-0.9).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Ontong Java Plateau in the western Pacific is anomalous compared to other oceanic large igneous provinces in that it appears to have never formed a large subaerial plateau. Paleoeruption depths (at 122 Ma) estimated from dissolved H2O and CO2 in submarine basaltic glass pillow rims vary from ~1100 m below sea level (mbsl) on the central part of the plateau to 2200-3000 mbsl on the northeastern edge. Our results suggest maximum initial uplift for the plateau of 2500-3600 m above the surrounding seafloor and 1500+/-400 m of postemplacement subsidence since 122 Ma. Our estimates of uplift and subsidence for the plateau are significantly less than predictions from thermal models of oceanic lithosphere, and thus our results are inconsistent with formation of the plateau by a high-temperature mantle plume. Two controversial possibilities to explain the anomalous uplift and subsidence are that the plateau (1) formed as a result of a giant bolide impact, or (2) formed from a mantle plume but has a lower crust of dense garnet granulite and/or eclogite; neither of these possibilities is fully consistent with all available geological, geophysical, and geochemical data. The origin of the largest magmatic event on Earth in the past 200 m.y. thus remains an enigma.