934 resultados para Low-Level Light Therapy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effects of LLLT on the expressionof inflammatory cytokines related to the development of oralmucositis by gingival fibroblasts. Primary gingival fibroblastswere seeded on 24-well plates (105cells/well) for 24 h. Freshserum-free culture medium (DMEM) was then added, andcells were placed in contact with LPS (Escherichia coli,1 lgmL1), followed by LLLT irradiation (LaserTABLE—InGaAsP diode prototype—780 nm, 25 mW) delivering 0,0.5, 1.5 or 3 J cm². Cells without contact with LPS werealso irradiated with the same energy densities. Gene expres-sion of TNF- a, IL-1b, IL-6 and IL-8 was evaluated by Real-Time PCR, and protein synthesis of these cytokines wasdetermined by enzyme-linked immunosorbent (ELISA) assay.Data were statistically analyzed by the Kruskal– Wallis test,complemented by the Mann–Whitney test (P < 0.05). LPStreatment increased the gene expression and protein synthesisof TNF-a, IL-6 and IL-8, while the expression of IL-1b wasnot affected. For LPS-treated groups, LLLT promoted signif-icant decreases in the expression of TNF-a, IL-6, and IL-8 at1.5 J cm2and 3 J cm2. These results demonstrate thatLLLT promoted a beneficial biomodulatory effect on theexpression of inflammatory cytokines related to oral mucosi-tis by human gingival fibroblasts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Obesity affects approximately 20% of the world population, and exercise is the primary non-pharmacological therapy. The combined use of exercise and low-level laser therapy (LLLT) may potentiate the effects promoted by exercise. The objective of this study was to investigate the effects of exercise in combination with phototherapy on adipocyte area, activity of the enzyme citrate synthase and muscle morphological analysis. We used 64 Wistar rats, which were divided into eight groups with 8 rats each: sedentary chow-diet (SC); sedentary chow-diet plus laser therapy (SCL), exercised chow-diet (EC); exercised chow-diet plus laser therapy (ECL); sedentary high-fat diet (SH); sedentary high-fat diet plus laser therapy (SHL); exercised high-fat diet (EH); exercised high-fat diet, laser therapy (EHL). The animals were submitted to a program of swimming training for 90min/5 times per week for 8weeks and LLLT (GA-Al-AS, 830nm) at a dose of 4.7J/point and a total energy of 9.4J/animal, with duration of 47s, which was applied to both gastrocnemius muscles after exercise. We conclude that the combined use of exercise and phototherapy increases the activity of the enzyme citrate synthase and decreases the white adipocyte area epididymal, retroperitoneal and visceral in obese rats, enhancing the effects of exercise.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Low-level laser therapy is a tool employed in the management of post-operative inflammation process and in the enhancement of reparative process. The aim of the study was to perform histological evaluation of dental and periodontal ligament of rats central upper-left incisor teeth re-implanted and irradiated with low-level laser (InGaAl, 685 nm, 50 J/cm(2)) 15, 30, and 60 days after re-implantation. Seventy-two male rats had the central upper left incisor removed and kept for 15 min on dry gauze before replantation. Laser was irradiated over the root surface and empty alveolus prior replantation and over surrounding mucosa after the re-implantation. After histological procedures, all slices were analyzed regarding external resorption area and histological aspects. We observed an increase of root resorption (p < 0.05) in the control group compared to the laser group at 15, 30, and 60 days. These results showed that the laser groups developed less root resorption areas than the control group in all experimental periods. Additionally, histological analysis revealed less inflammatory cells and necrotic areas in laser groups.
Resumo:
The purpose of this study was to assess the effect of low level laser therapy on subjects with intra-articular temporomandibular disorders (IA-TMD), and to quantify and compare severity of signs and symptoms before, during, and after the laser applications. The sample consisted of 45 subjects randomly divided into three groups (G) of 15 subjects each: G-I: 15 individuals with IA-TMD submitted to an energy dose of 52.5 J/cm(2); G-II: dose of 105.0 J/cm(2); and G-III: placebo group (0 J/cm(2)). In all groups, the applications were performed on condylar points on the masseter and anterior temporalis muscles. Two weekly sessions were held for five weeks, totaling 10 applications. The assessed variables were: mandibular movements and painful symptoms evoked by muscle palpation. These variables were measured before starting the study, then immediately after the first, fifth, and tenth laser application, and finally, 32 days after completing the applications. The results showed that there were statistically significant differences for G-I and G-II at the level of 1% between the doses, as well as between assessments. Therefore, it was concluded that the use of low level laser increased the mean mandibular range of motion and reduced painful symptoms in the groups that received effective treatment, which did not occur in the placebo group.
Resumo:
The aim of this study was to investigate the osteoblastic activity of cells derived from the midpalatal suture upon treatment with low-level laser therapy (LLLT) after rapid maxillary expansion (RME). A total of 30 rats were divided into two groups: experimental I (15 rats with RME without LLLT) and experimental II (15 rats with RME + LLLT). The rats were euthanized at 24 h, 48 h, and 7 days after RME, when the osteoblastic cells derived from the rats' midpalatal suture were explanted. These cells were cultured for periods up to 17 days, and then in vitro osteogenesis parameters and gene expression markers were evaluated. The cellular doubling time in the proliferative stage (3-7 days) was decreased in cultured cells harvested from the midpalatal suture at 24 and 48 h after RME + LLLT, as indicated by the increased growth of the cells in a culture. Alkaline phosphatase activity at days 7 and 14 of the culture was increased by LLLT in cells explanted from the midpalatal suture at 24 and 48 h and 7 days after RME. The mineralization at day 17 was increased by LLLT after RME in all periods. Results from the real-time PCR demonstrated that cells harvested from the LLLT after RME group showed higher levels of ALP, Runx2, osteocalcin, type I collagen, and bone sialoprotein mRNA than control cells. More pronounced effects on ALP activity, mineralization, and gene expression of bone markers were observed at 48 h after RME and LLLT. These results indicate that the LLLT applied after RME is able to increase the proliferation and the expression of an osteoblastic phenotype in cells derived from the midpalatal suture.
Resumo:
Muscle strains are among the most prevalent causes for athletes absence from sport activities. Low-level laser therapy (LLLT) has recently emerged as a potential contender to nonsteroidal anti-inflammatory drugs in muscle strain treatment. In this work we investigated effects of LLLT and diclofenac on functional outcomes in the acute stage after muscle strain injury in rats. Muscle strain was induced by overloading the tibialis anterior muscle of rats during anesthesia. The injured groups received either no treatment, or a single treatment with diclofenac 30 min prior to injury, or LLLT (810 nm, 100 mW) with doses of 1, 3, 6 or 9 J, at 1 h after injury. Functional outcome measures included a walking index and assessment of electrically induced muscle performance. All treatments (except 9 J LLLT) significantly improved the walking index 12 h postinjury compared with the untreated group. The 3 J group also showed a significantly better walking index than the drug group. All treatments significantly improved muscle performance at 6 and 12 h. LLLT dose of 3 J was as effective as the pharmacological agent in improving functional outcomes in the early phase after a muscle strain injury in rats.
Resumo:
Purpose: Oral mucositis is a major complication of concurrent chemoradiotherapy (CRT) in head-and-neck cancer patients. Low-level laser (LLL) therapy is a promising preventive therapy. We aimed to evaluate the efficacy of LLL therapy to decrease severe oral mucositis and its effect on RT interruptions. Methods and Materials: In the present randomized, double-blind, Phase III study, patients received either gallium-aluminum-arsenide LLL therapy 2.5 J/cm(2) or placebo laser, before each radiation fraction. Eligible patients had to have been diagnosed with squamous cell carcinoma or undifferentiated carcinoma of the oral cavity, pharynx, larynx, or metastases to the neck with an unknown primary site. They were treated with adjuvant or definitive CRT, consisting of conventional RT 60-70 Gy (range, 1.8-2.0 Gy/d, 5 times/wk) and concurrent cisplatin. The primary endpoints were the oral mucositis severity in Weeks 2, 4, and 6 and the number of RT interruptions because of mucositis. The secondary endpoints included patient-reported pain scores. To detect a decrease in the incidence of Grade 3 or 4 oral mucositis from 80% to 50%, we planned to enroll 74 patients. Results: A total of 75 patients were included, and 37 patients received preventive LLL therapy. The mean delivered radiation dose was greater in the patients treated with LLL (69.4 vs. 67.9 Gy, p = .03). During CRT, the number of patients diagnosed with Grade 3 or 4 oral mucositis treated with LLL vs. placebo was 4 vs. 5 (Week 2, p = 1.0), 4 vs. 12 (Week 4, p = .08), and 8 vs. 9 (Week 6, p = 1.0), respectively. More of the patients treated with placebo had RT interruptions because of mucositis (6 vs. 0, p = .02). No difference was detected between the treatment arms in the incidence of severe pain. Conclusions: LLL therapy was not effective in reducing severe oral mucositis, although a marginal benefit could not be excluded. It reduced RT interruptions in these head-and-neck cancer patients, which might translate into improved CRT efficacy. (C) 2012 Elsevier Inc.
Resumo:
Objectives: To estimate the effects of low level laser therapy in combination with a programme of exercises on pain, functionality, range of motion, muscular strength and quality of life in patients with osteoarthritis of the knee. Design: A randomized double-blind placebo-controlled trial with sequential allocation of patients to different treatment groups. Setting: Special Rehabilitation Services. Subjects: Forty participants with knee osteoarthritis, 2-4 osteoarthritis degree, aged between 50 and 75 years and both genders. Intervention: Participants were randomized into one of two groups: the laser group (low level laser therapy dose of 3 J and exercises) or placebo group (placebo laser and exercises). Main measures: Pain was assessed using a visual analogue scale (VAS), functionality using the Lequesne questionnaire, range of motion with a universal goniometer, muscular strength using a dynamometer, and activity using the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) questionnaire at three time points: (T1) baseline, (T2) after the end of laser therapy (three weeks) and (T3) the end of the exercises (11 weeks). Results: When comparing groups, significant differences in the activity were also found (P = 0.03). No other significant differences (P > 0.05) were observed in other variables. In intragroup analysis, participants in the laser group had significant improvement, relative to baseline, on pain (P = 0.001), range of motion (P = 0.01), functionality (P = 0.001) and activity (P < 0.001). No significant improvement was seen in the placebo group. Conclusion: Our findings suggest that low level laser therapy when associated with exercises is effective in yielding pain relief, function and activity on patients with osteoarthritis of the knees.
Resumo:
Objective: The purpose of this study was to analyze the influence of two different irradiation times with 85mW/cm(2) 830nm laser on the behavior of mouse odontoblast-like cells. Background data: The use of low-level laser therapy (LLLT) to stimulate pulp tissue is a reality, but few reports relate odontoblastic responses to irradiation in in vitro models. Methods: Odontoblast-like cells (MDPC-23) were cultivated and divided into three groups: control/nonirradiated (group 1); or irradiated with 85mW/cm(2), 830nm laser for 10 sec (0.8 J/cm(2)) (group 2); or for 50 sec (4.2 J/cm(2)) (group 3) with a wavelength of 830 nm. After 3, 7, and 10 days, it was analyzed: growth curve and cell viability, total protein content, alkaline phosphatase (ALP) activity, calcified nodules detection and quantification, collagen immunolocalization, vascular endothelial growth factor (VEGF) expression, and real-time polymerase chain reaction (PCR) for DMP1 gene. Data were analyzed by Kruskall-Wallis test (alpha = 0.05). Results: Cell growth was smaller in group 2 (p < 0.01), whereas viability was similar in all groups and at all periods. Total protein content and ALP activity increased on the 10th day with 0.8 J/cm(2) (p < 0.01), as well as the detection and quantification of mineralization nodules (p < 0.05), collagen, and VEGF expression (p < 0.01). The expression of DMP1 increased in all groups (p < 0.05) compared with control at 3 days, except for 0.8 J/cm(2) at 3 days and control at 10 days. Conclusions: LLLT influenced the behavior of odontoblast-like cells; the shorter time/smallest energy density promoted the expression of odontoblastic phenotype in a more significant way.
Resumo:
NSAIDs are widely prescribed and used over the years to treat tendon injuries despite its well-known long-term side effects. In the last years several animal and human trials have shown that low-level laser therapy (LLLT) presents modulatory effects on inflammatory markers, however the mechanisms involved are not fully understood. The aim of this study was to evaluate the short-term effects of LLLT or sodium diclofenac treatments on biochemical markers and biomechanical properties of inflamed Achilles tendons. Wistar rats Achilles tendons (n?=?6/group) were injected with saline (control) or collagenase at peritendinous area of Achilles tendons. After 1?h animals were treated with two different doses of LLLT (810?nm, 1 and 3?J) at the sites of the injections, or with intramuscular sodium diclofenac. Regarding biochemical analyses, LLLT significantly decreased (p?<?0.05) COX-2, TNF-a, MMP-3, MMP-9, and MMP-13 gene expression, as well as prostaglandin E2 (PGE2) production when compared to collagenase group. Interestingly, diclofenac treatment only decreased PGE2 levels. Biomechanical properties were preserved in the laser-treated groups when compared to collagenase and diclofenac groups. We conclude that LLLT was able to reduce tendon inflammation and to preserve tendon resistance and elasticity. (c) 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:19451951, 2012
Resumo:
In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm(2), 100 s irradiation per point, 5 J, 1,785 J/cm(2) at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts.