875 resultados para Loss and damage.
Resumo:
Loss of solids from and gain in weight of meat of whole prawn and prawn meat stored in ice has been studied to explain the mechanism of solid loss. Two stages are identified in this phenomenon. In the first stage water is absorbed without loss of solids resulting in a maximum increase in weight. In the second stage both solids and water are lost resulting in gradual decrease in weight from the maximum reached but not reaching the original weight. It is inferred that whole prawns stored in ice up to two days give the maximum peeled yield without loss of nutrients and at the same time making the peeling process easier.
Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction
Resumo:
Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (α), compound angle (β ), hole inlet geometry and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR = 0.16, 0.64 and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different α and β but with the same angle between the mainstream and coolant flow directions (angle κ). This relationship is assessed through experiments by testing two sets of cylindrical holes with different α and β : one set with κ = 35°, another set with κ = 60°. The data confirm the stated relationship between α, β, κ and the aerodynamic mixing loss. The results show that the designer should minimise κ to obtain the lowest loss, but maximise β to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α =35.0°, β =0°) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is ≈ 50 % of the loss of the fan-shaped hole at IR = 0.64 and 1.44. Copyright © 2011 by ASME.
Influence of Film Cooling Hole Angles and Geometries on Aerodynamic Loss and Net Heat Flux Reduction
Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction
Resumo:
Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (a), compound angle (b), hole inlet geometry, and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR=0.16, 0.64, and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different a and b but with the same angle between the mainstream and coolant flow directions (angle k). This relationship is assessed through experiments by testing two sets of cylindrical holes with different a and b: one set with k=35 deg, and another set with k=60 deg. The data confirm the stated relationship between α, β, k and the aerodynamic mixing loss. The results show that the designer should minimize k to obtain the lowest loss, but maximize b to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α=35.0 deg, β=0 deg) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan, and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is≈50% of the loss of the fan-shaped hole at IR=0.64 and 1.44. © 2013 by ASME.
Resumo:
We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. © 2011 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. ©2011 Optical Society of America.
Resumo:
Multimode polymer waveguide crossings exhibiting the lowest reported excess loss of 0.006dB/crossing and crosstalk values as low as -30dB are presented. Their potential for use in high-speed dense optical interconnection architectures is demonstrated. © 2007 Optical Society of America.
Resumo:
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5-10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.
Resumo:
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.
Resumo:
A rearrangeable nonblocking 4 x 4 thermooptic silicon-on-insulator waveguide switch matrix at 1.55-mu m integrated spot size converters is designed and fabricated for the first time. The insertion losses and polarization-dependent losses of the four channels are less than 10 and 0.8 dB, respectively. The extinction ratios are larger than 20 dB. The response times are 4.6 mu s for rising edge and 1.9 mu s for failing edge.