989 resultados para Long lifetime
Resumo:
We present a search for a neutral particle, pair produced in pp collisions at root s=1.96 TeV, which decays into two muons and lives long enough to travel at least 5 cm before decaying. The analysis uses approximate to 380 pb(-1) of data recorded with the D0 detector. The background is estimated to be about one event. No candidates are observed, and limits are set on the pair-production cross section times branching fraction into dimuons + X for such particles. For a mass of 10 GeV and lifetime of 4x10(-11) s, we exclude values greater than 0.14 pb (95% C.L.). These results are used to limit the interpretation of NuTeV's excess of dimuon events.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A search has been performed for long-lived particles that have stopped in the CMS detector, during 7TeV proton-proton operations of the CERN LHC. The existence of such particles could be inferred from observation of their decays when there were no protonproton collisions in the CMS detector, namely during gaps between LHC beam crossings. Using a data set in which CMS recorded an integrated luminosity of 4.0 fb -1, and a search interval corresponding to 246 hours of trigger live time, 12 events are observed, with a mean background prediction of 8:6 ± 2:4 events. Limits are presented at 95% confidence level on long-lived gluino and stop production, over 13 orders of magnitude of particle lifetime. Assuming the cloud model of R-hadron interactions, a gluino with mass below 640 GeV and a stop with mass below 340 GeV are excluded, for lifetimes between 10 μs and 1000 s.
Resumo:
A measurement of the λb 0 lifetime using the decay λb 0-1, was recorded with the CMS experiment at the Large Hadron Collider using triggers that selected dimuon events in the J/ψ mass region. The λb 0 lifetime is measured to be 1.503 ± 0.052 (stat.) ± 0.031 (syst.) ps. [Figure not available: see fulltext.] © 2013 Cern for the benefit of the CMS collaboration.
Resumo:
A search is performed for heavy resonances decaying to two long-lived massive neutral particles, each decaying to leptons. The experimental signature is a distinctive topology consisting of a pair of oppositely charged leptons originating at a separated secondary vertex. Events were collected by the CMS detector at the LHC during pp collisions at √s = 7 TeV, and selected from data samples corresponding to 4.1 (5.1) fb-1 of integrated luminosity in the electron (muon) channel. No significant excess is observed above standard model expectations, and an upper limit is set with 95% confidence level on the production cross section times the branching fraction to leptons, as a function of the long-lived massive neutral particle lifetime. Copyright CERN.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We describe the planning, implementation, and initial results of the first planned move of the default position of spectra on the Hubble Space Telescope's Cosmic Origins Spectrograph (COS) Far Ultraviolet (FUV) cross-delay line detector. This was motivated by the limited amount of charge that can be extracted from the microchannel plate due to gain sag at any one position. Operations at a new location began on July 23, 2012, with a shift of the spectrum by +3.5"(corresponding to ~ 41 pixels or ~ 1 mm) in a direction orthogonal to the spectral dispersion. Operation at this second "lifetime position" allows for spectra to be collected which are not affected by detector artifacts and loss of sensitivity due to gain sag. We discuss programs designed to enable operations at the new lifetime position; these include determinations of operational high voltage, measuring walk corrections and focus, confirming spectrum placement and aperture centering, and target acquisition performance. We also present results related to calibration of the new lifetime position, including measurements of spectral resolution and wavelength calibration, flux and flat field calibration, carryover of time-dependent sensitivity monitoring, and operations with the Bright Object Aperture (BOA).
Resumo:
Long-term endurance sports are associated with atrial remodeling and atrial arrhythmias. More importantly, high-level endurance training may promote right ventricular (RV) dysfunction and complex ventricular arrhythmias. We investigated the long-term consequences of marathon running on cardiac remodeling as a potential substrate for arrhythmias with a focus on the right heart. We invited runners of the 2010 Grand Prix of Bern, a 10-mile race. Of 873 marathon and nonmarathon runners who applied, 122 (61 women) entered the final analysis. Subjects were stratified according to former marathon participations: control group (nonmarathon runners, n = 34), group 1 (1 marathon to 5 marathons, mean 2.7, n = 46), and group 2 (≥6 marathons, mean 12.8, n = 42). Mean age was 42 ± 7 years. Results were adjusted for gender, age, and lifetime training hours. Right and left atrial sizes increased with marathon participations. In group 2, right and left atrial enlargements were present in 60% and 74% of athletes, respectively. RV and left ventricular (LV) dimensions showed no differences among groups, and RV or LV dilatation was present in only 2.4% or 4.3% of marathon runners, respectively. In multiple linear regression analysis, marathon participation was an independent predictor of right and left atrial sizes but had no effect on RV and LV dimensions and function. Atrial and ventricular ectopic complexes during 24-hour Holter monitoring were low and equally distributed among groups. In conclusion, in nonelite athletes, marathon running was not associated with RV enlargement, dysfunction, or ventricular ectopy. Marathon running promoted biatrial remodeling.
Resumo:
The ability of the brain to adjust to changing environments and to recover from damage rests on its remarkable capacity to adapt through plastic changes of underlying neural networks. We show here with an eye movement paradigm that a lifetime of plastic changes can be extended to several hours by repeated applications of theta burst transcranial magnetic stimulation to the frontal eye field of the human cortex. The results suggest that repeated application of the same stimulation protocol consolidates short-lived plasticity into long-lasting changes.
Resumo:
BACKGROUND AND PURPOSE: Visual neglect is a frequent disability in stroke and adversely affects mobility, discharge destination, and length of hospital stay. It is assumed that its severity is enhanced by a released interhemispheric inhibition from the unaffected toward the affected hemisphere. Continuous theta burst transcranial magnetic stimulation (TBS) is a new inhibitory brain stimulation protocol which has the potential to induce behavioral effects outlasting stimulation. We aimed to test whether parietal TBS over the unaffected hemisphere can induce a long-lasting improvement of visual neglect by reducing the interhemispheric inhibition. METHODS: Eleven patients with left-sided visual neglect attributable to right hemispheric stroke were tested in a visual perception task. To evaluate the specificity of the TBS effect, 3 conditions were tested: 2 TBS trains over the left contralesional posterior parietal cortex, 2 trains of sham stimulation over the contralesional posterior parietal cortex, and a control condition without any intervention. To evaluate the lifetime of repeated trains of TBS in 1 session, 4 trains were applied over the contralesional posterior parietal cortex. RESULTS: Two TBS trains significantly increased the number of perceived left visual targets for up to 8 hours as compared to baseline. No significant improvement was found with sham stimulation or in the control condition without any intervention. The application of 4 TBS trains significantly increased the number of perceived left targets up to 32 hours. CONCLUSIONS: The new approach of repeating TBS at the same day may be promising for therapy of neglect.
Resumo:
Late long-term potentiation (L-LTP) denotes long-lasting strengthening of synapses between neurons. L-LTP appears essential for the formation of long-term memory, with memories at least partly encoded by patterns of strengthened synapses. How memories are preserved for months or years, despite molecular turnover, is not well understood. Ongoing recurrent neuronal activity, during memory recall or during sleep, has been hypothesized to preferentially potentiate strong synapses, preserving memories. This hypothesis has not been evaluated in the context of a mathematical model representing ongoing activity and biochemical pathways important for L-LTP. In this study, ongoing activity was incorporated into two such models - a reduced model that represents some of the essential biochemical processes, and a more detailed published model. The reduced model represents synaptic tagging and gene induction simply and intuitively, and the detailed model adds activation of essential kinases by Ca(2+). Ongoing activity was modeled as continual brief elevations of Ca(2+). In each model, two stable states of synaptic strength/weight resulted. Positive feedback between synaptic weight and the amplitude of ongoing Ca(2+) transients underlies this bistability. A tetanic or theta-burst stimulus switches a model synapse from a low basal weight to a high weight that is stabilized by ongoing activity. Bistability was robust to parameter variations in both models. Simulations illustrated that prolonged periods of decreased activity reset synaptic strengths to low values, suggesting a plausible forgetting mechanism. However, episodic activity with shorter inactive intervals maintained strong synapses. Both models support experimental predictions. Tests of these predictions are expected to further understanding of how neuronal activity is coupled to maintenance of synaptic strength. Further investigations that examine the dynamics of activity and synaptic maintenance can be expected to help in understanding how memories are preserved for up to a lifetime in animals including humans.
Resumo:
PURPOSE Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). METHODS A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. RESULTS Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P < 0.0001). Fluorescence lifetimes increased with age. CONCLUSIONS The FLIO allows reproducible measurements of fluorescence lifetimes of the macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.
Resumo:
Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. In this Letter, results are presented of a search for events containing one or more such particles, which decay at a significant distance from their production point, using a final state containing charged hadrons and an associated muon. This analysis uses a data sample of proton-proton collisions at root s = 7 TeV corresponding to an integrated luminosity of 4.4 fb(-1) collected in 2011 by the ATLAS detector operating at the Large Hadron Collider. Results are interpreted in the context of R-parity violating supersymmetric scenarios. No events in the signal region are observed and limits are set on the production cross section for pair production of supersymmetric particles, multiplied by the square of the branching fraction for a neutralino to decay to charged hadrons and a muon, based on the scenario where both of the produced supersymmetric particles give rise to neutralinos that decay in this way. However, since the search strategy is based on triggering on and reconstructing the decay products of individual long-lived particles, irrespective of the rest of the event, these limits can easily be reinterpreted in scenarios with different numbers of long-lived particles per event. The limits are presented as a function of neutralino lifetime, and for a range of squark and neutralino masses.
Resumo:
An updated search is performed for gluino, top squark, or bottom squark R-hadrons that have come to rest within the ATLAS calorimeter, and decay at some later time to hadronic jets and a neutralino, using 5.0 and 22.9 fb(-1) of pp collisions at 7 and 8 TeV, respectively. Candidate decay events are triggered in selected empty bunch crossings of the LHC in order to remove pp collision backgrounds. Selections based on jet shape and muon system activity are applied to discriminate signal events from cosmic ray and beam-halo muon backgrounds. In the absence of an excess of events, improved limits are set on gluino, stop, and sbottom masses for different decays, lifetimes, and neutralino masses. With a neutralino of mass 100 GeV, the analysis excludes gluinos with mass below 832 GeV (with an expected lower limit of 731 GeV), for a gluino lifetime between 10 mu s and 1000 s in the generic R-hadron model with equal branching ratios for decays to q (q) over bar(chi) over tilde (0) and g (chi) over tilde (0). Under the same assumptions for the neutralino mass and squark lifetime, top squarks and bottom squarks in the Regge R-hadron model are excluded with masses below 379 and 344 GeV, respectively.