950 resultados para Logistic maps
Resumo:
This article explores the use of digital technology such as interactive maps to enhance books.
Resumo:
In our large library of annotated environmental recordings of animal vocalizations, searching annotations by label can return thousands of results. We propose a heat map of aggregated annotation time and frequency bounds, maintaining the shape of the annotations as they appear on the spectrogram. This compactly displays the distribution of annotation bounds for the user's query, and allows them to easily identify unusual annotations. Key to this is allowing zero values on the map to be differentiated from areas where there are single annotations.
Resumo:
Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.
Resumo:
Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.
Resumo:
Strategic searching for invasive pests presents a formidable challenge for conservation managers. Limited funding can necessitate choosing between surveying many sites cursorily, or focussing intensively on fewer sites. While existing knowledge may help to target more likely sites, e.g. with species distribution models (maps), this knowledge is not flawless and improving it also requires management investment. 2.In a rare example of trading-off action against knowledge gain, we combine search coverage and accuracy, and its future improvement, within a single optimisation framework. More specifically we examine under which circumstances managers should adopt one of two search-and-control strategies (cursory or focussed), and when they should divert funding to improving knowledge, making better predictive maps that benefit future searches. 3.We use a family of Receiver Operating Characteristic curves to reflect the quality of maps that direct search efforts. We demonstrate our framework by linking these to a logistic model of invasive spread such as that for the red imported fire ant Solenopsis invicta in south-east Queensland, Australia. 4.Cursory widespread searching is only optimal if the pest is already widespread or knowledge is poor, otherwise focussed searching exploiting the map is preferable. For longer management timeframes, eradication is more likely if funds are initially devoted to improving knowledge, even if this results in a short-term explosion of the pest population. 5.Synthesis and applications. By combining trade-offs between knowledge acquisition and utilization, managers can better focus - and justify - their spending to achieve optimal results in invasive control efforts. This framework can improve the efficiency of any ecological management that relies on predicting occurrence. © 2010 The Authors. Journal of Applied Ecology © 2010 British Ecological Society.
Resumo:
This study aimed to investigate the spatial clustering and dynamic dispersion of dengue incidence in Queensland, Australia. We used Moran's I statistic to assess the spatial autocorrelation of reported dengue cases. Spatial empirical Bayes smoothing estimates were used to display the spatial distribution of dengue in postal areas throughout Queensland. Local indicators of spatial association (LISA) maps and logistic regression models were used to identify spatial clusters and examine the spatio-temporal patterns of the spread of dengue. The results indicate that the spatial distribution of dengue was clustered during each of the three periods of 1993–1996, 1997–2000 and 2001–2004. The high-incidence clusters of dengue were primarily concentrated in the north of Queensland and low-incidence clusters occurred in the south-east of Queensland. The study concludes that the geographical range of notified dengue cases has significantly expanded in Queensland over recent years.
Resumo:
Brain connectivity analyses are increasingly popular for investigating organization. Many connectivity measures including path lengths are generally defined as the number of nodes traversed to connect a node in a graph to the others. Despite its name, path length is purely topological, and does not take into account the physical length of the connections. The distance of the trajectory may also be highly relevant, but is typically overlooked in connectivity analyses. Here we combined genotyping, anatomical MRI and HARDI to understand how our genes influence the cortical connections, using whole-brain tractography. We defined a new measure, based on Dijkstra's algorithm, to compute path lengths for tracts connecting pairs of cortical regions. We compiled these measures into matrices where elements represent the physical distance traveled along tracts. We then analyzed a large cohort of healthy twins and show that our path length measure is reliable, heritable, and influenced even in young adults by the Alzheimer's risk gene, CLU.
Resumo:
Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5×10-8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10-8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98-1.14; p=0.17), displaying high degree of heterogeneity (I2=57%; Qhet p=0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p=0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.
Resumo:
This paper describes ongoing work on a system using spatial descriptions to construct abstract maps that can be used for goal-directed exploration in an unfamiliar office environment. Abstract maps contain membership, connectivity, and spatial layout information extracted from symbolic spatial information. In goal-directed exploration, the robot would then link this information with observed symbolic information and its grounded world representation. We demonstrate the ability of the system to extract and represent membership, connectivity, and spatial layout information from spatial descriptions of an office environment. In the planned study, the robot will navigate to the goal location using the abstract map to inform the best direction to explore in.
Resumo:
The development of a microstructure in 304L stainless steel during industrial hot-forming operations, including press forging (mean strain rate of 0.15 s(-1)), rolling/extrusion (2-5 s(-1)), and hammer forging (100 s(-1)) at different temperatures in the range 600-1200 degrees C, was studied with a view to validating the predictions of the processing map. The results have shown that excellent correlation exists between the regimes exhibited by the map and the product microstructures. 304L stainless steel exhibits instability bands when hammer forged at temperatures below 1100 degrees C, rolled/extruded below 1000 degrees C, or press forged below 800 degrees C. All of these conditions must be avoided in mechanical processing of the material. On the other hand, ideally, the material may be rolled, extruded, or press forged at 1200 degrees C to obtain a defect-free microstructure.
Resumo:
The genus Corymbia is closely related to the genus Eucalyptus, and like Eucalyptus contains tree species that are important for sub-tropical forestry. Corymbia's close relationship with Eucalyptus suggests genetic studies in Corymbia should benefit from transfer of genetic information from its more intensively studied relatives. Here we report a genetic map for Corymbia spp. based on microsatellite markers identified de novo in Corymbia sp or transferred from Eucalyptus. A framework consensus map was generated from an outbred F 2 population (n = 90) created by crossing two unrelated Corymbia torelliana x C. citriodora subsp. variegata F1 trees. The map had a total length of 367 cM (Kosambi) and was composed of 46 microsatellite markers distributed across 13 linkage groups (LOD 3). A high proportion of Eucalyptus microsatellites (90%) transferred to Corymbia. Comparative analysis between the Corymbia map and a published Eucalyptus map identified eight homeologous linkage groups in Corymbia with 13 markers mapping on one or both maps. Further comparative analysis was limited by low power to detect linkage due to low genome coverage in Corymbia, however, there was no convincing evidence for chromosomal structural differences because instances of non-synteny were associated with large distances on the Eucalyptus map. Segregation distortion was primarily restricted to a single linkage group and due to a deficit of hybrid genotypes, suggesting that hybrid inviability was one factor shaping the genetic composition of the F2 population in this inter-subgeneric hybrid. The conservation of microsatellite loci and synteny between Corymbia and Eucalyptus suggests there will be substantial value in exchanging information between the two groups.
Resumo:
Marker ordering during linkage map construction is a critical component of QTL mapping research. In recent years, high-throughput genotyping methods have become widely used, and these methods may generate hundreds of markers for a single mapping population. This poses problems for linkage analysis software because the number of possible marker orders increases exponentially as the number of markers increases. In this paper, we tested the accuracy of linkage analyses on simulated recombinant inbred line data using the commonly used Map Manager QTX (Manly et al. 2001: Mammalian Genome 12, 930-932) software and RECORD (Van Os et al. 2005: Theoretical and Applied Genetics 112, 30-40). Accuracy was measured by calculating two scores: % correct marker positions, and a novel, weighted rank-based score derived from the sum of absolute values of true minus observed marker ranks divided by the total number of markers. The accuracy of maps generated using Map Manager QTX was considerably lower than those generated using RECORD. Differences in linkage maps were often observed when marker ordering was performed several times using the identical dataset. In order to test the effect of reducing marker numbers on the stability of marker order, we pruned marker datasets focusing on regions consisting of tightly linked clusters of markers, which included redundant markers. Marker pruning improved the accuracy and stability of linkage maps because a single unambiguous marker order was produced that was consistent across replications of analysis. Marker pruning was also applied to a real barley mapping population and QTL analysis was performed using different map versions produced by the different programs. While some QTLs were identified with both map versions, there were large differences in QTL mapping results. Differences included maximum LOD and R-2 values at QTL peaks and map positions, thus highlighting the importance of marker order for QTL mapping
Resumo:
Background: Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. Results: The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci ( 1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. Conclusion: The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.