984 resultados para Logic Programming
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
Goal independent analysis of logic programs is commonly discussed in the context of the bottom-up approach. However, while the literature is rich in descriptions of top-down analysers and their application, practical experience with bottom-up analysis is still in a preliminary stage. Moreover, the practical use of existing top-down frameworks for goal independent analysis has not been addressed in a practical system. We illustrate the efficient use of existing goal dependent, top-down frameworks for abstract interpretation in performing goal independent analyses of logic programs much the same as those usually derived from bottom-up frameworks. We present several optimizations for this flavour of top-down analysis. The approach is fully implemented within an existing top-down framework. Several implementation tradeoffs are discussed as well as the influence of domain characteristics. An experimental evaluation including a comparison with a bottom-up analysis for the domain Prop is presented. We conclude that the technique can offer advantages with respect to standard goal dependent analyses.
Resumo:
In this paper we present a novel execution model for parallel implementation of logic programs which is capable of exploiting both independent and-parallelism and or-parallelism in an efficient way. This model extends the stack copying approach, which has been successfully applied in the Muse system to implement or-parallelism, by integrating it with proven techniques used to support independent and-parallelism. We show how all solutions to non-deterministic andparallel goals are found without repetitions. This is done through recomputation as in Prolog (and in various and-parallel systems, like &-Prolog and DDAS), i.e., solutions of and-parallel goals are not shared. We propose a scheme for the efficient management of the address space in a way that is compatible with the apparently incompatible requirements of both and- and or-parallelism. We also show how the full Prolog language, with all its extra-logical features, can be supported in our and-or parallel system so that its sequential semantics is preserved. The resulting system retains the advantages of both purely or-parallel systems as well as purely and-parallel systems. The stack copying scheme together with our proposed memory management scheme can also be used to implement models that combine dependent and-parallelism and or-parallelism, such as Andorra and Prometheus.
Resumo:
Traditional logic programming languages, such as Prolog, use a fixed left-to-right atom scheduling rule. Recent logic programming languages, however, usually provide more flexible scheduling in which computation generally proceeds leftto- right but in which some calis are dynamically "delayed" until their arguments are sufRciently instantiated to allow the cali to run efficiently. Such dynamic scheduling has a significant cost. We give a framework for the global analysis of logic programming languages with dynamic scheduling and show that program analysis based on this framework supports optimizations which remove much of the overhead of dynamic scheduling.
Resumo:
Studying independence of literals, variables, and substitutions has proven very useful in the context of logic programming (LP). Here we study independence in the broader context of constraint logic programming (CLP). We show that a naive extrapolation of the LP definitions of independence to CLP is unsatisfactory (in fact, wrong) for two reasons. First, because interaction between variables through constraints is more complex than in the case of logic programming. Second, in order to ensure the efUciency of several optimizations not only must independence of the search space be considered, but also an orthogonal issue - "independence of constraint solving." We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow different independence-related optimizations, from parallelism to intelligent backtracking. Sufficient conditions for independence which can be evaluated "a-priori" at run-time are also proposed. Our results suggest that independence, provided a suitable definition is chosen, is even more useful in CLP than in LP.
Resumo:
This paper addresses the design of visual paradigms for observing the parallel execution of logic programs. First, an intuitive method is proposed for arriving at the design of a paradigm and its implementation as a tool for a given model of parallelism. This method is based on stepwise reñnement starting from the deñnition of basic notions such as events and observables and some precedence relationships among events which hold for the given model of parallelism. The method is then applied to several types of parallel execution models for logic programs (Orparallelism, Determinate Dependent And parallelism, Restricted and-parallelism) for which visualization paradigms are designed. Finally, VisAndOr, a tool which implements all of these paradigms is presented, together with a discussion of its usefulness through examples.
Resumo:
While logic programming languages offer a great deal of scope for parallelism, there is usually some overhead associated with the execution of goals in parallel because of the work involved in task creation and scheduling. In practice, therefore, the "granularity" of a goal, i.e. an estimate of the work available under it, should be taken into account when deciding whether or not to execute a goal concurrently as a sepárate task. This paper describes a method for estimating the granularity of a goal at compile time. The runtime overhead associated with our approach is usually quite small, and the performance improvements resulting from the incorporation of grainsize control can be quite good. This is shown by means of experimental results.
Resumo:
There has been significant interest in parallel execution models for logic programs which exploit Independent And-Parallelism (IAP). In these models, it is necessary to determine which goals are independent and therefore eligible for parallel execution and which goals have to wait for which others during execution. Although this can be done at run-time, it can imply a very heavy overhead. In this paper, we present three algorithms for automatic compiletime parallelization of logic programs using IAP. This is done by converting a clause into a graph-based computational form and then transforming this graph into linear expressions based on &-Prolog, a language for IAP. We also present an algorithm which, given a clause, determines if there is any loss of parallelism due to linearization, for the case in which only unconditional parallelism is desired. Finally, the performance of these annotation algorithms is discussed for some benchmark programs.
Resumo:
This paper presents and proves some fundamental results for independent and-parallelism (IAP). First, the paper treats the issues of correctness and efficiency: after defining strict and non-strict goal independence, it is proved that if strictly independent goals are executed in parallel the solutions obtained are the same as those produced by standard sequential execution. It is also shown that, in the absence of failure, the parallel proof procedure doesn't genérate any additional work (with respect to standard SLDresolution) while the actual execution time is reduced. The same results hold even if non-strictly independent goals are executed in parallel, provided a trivial rewriting of such goals is performed. In addition, and most importantly, treats the issue of compile-time generation of IAP by proposing conditions, to be written at compile-time, to efficiently check strict and non-strict goal independence at run-time and proving the sufficiency of such conditions. It is also shown how simpler conditions can be constructed if some information regarding the binding context of the goals to be executed in parallel is available to the compiler trough either local or program-level analysis. These results therefore provide a formal basis for the automatic compile-time generation of IAP. As a corollary of such results, the paper also proves that negative goals are always non-strictly independent, and that goals which share a first occurrence of an existential variable are never independent.
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of both speed and precision of analysis. It discusses design and implementation aspects of two practical abstract interpretation-based flow analysis systems: MA3, the MOO Andparallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained from these implementations. Based on these results, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.
Resumo:
Although the sequential execution speed of logic programs has been greatly improved by the concepts introduced in the Warren Abstract Machine (WAM), parallel execution represents the only way to increase this speed beyond the natural limits of sequential systems. However, most proposed parallel logic programming execution models lack the performance optimizations and storage efficiency of sequential systems. This paper presents a parallel abstract machine which is an extension of the WAM and is thus capable of supporting ANDParallelism without giving up the optimizations present in sequential implementations. A suitable instruction set, which can be used as a target by a variety of logic programming languages, is also included. Special instructions are provided to support a generalized version of "Restricted AND-Parallelism" (RAP), a technique which reduces the overhead traditionally associated with the run-time management of variable binding conflicts to a series of simple run-time checks, which select one out of a series of compiled execution graphs.
Resumo:
We propose a computational methodology -"B-LOG"-, which offers the potential for an effective implementation of Logic Programming in a parallel computer. We also propose a weighting scheme to guide the search process through the graph and we apply the concepts of parallel "branch and bound" algorithms in order to perform a "best-first" search using an information theoretic bound. The concept of "session" is used to speed up the search process in a succession of similar queries. Within a session, we strongly modify the bounds in a local database, while bounds kept in a global database are weakly modified to provide a better initial condition for other sessions. We also propose an implementation scheme based on a database machine using "semantic paging", and the "B-LOG processor" based on a scoreboard driven controller.
Resumo:
The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7].
Resumo:
Global data-flow analysis of (constraint) logic programs, which is generally based on abstract interpretation [7], is reaching a comparatively high level of maturity. A natural question is whether it is time for its routine incorporation in standard compilers, something which, beyond a few experimental systems, has not happened to date. Such incorporation arguably makes good sense only if: • the range of applications of global analysis is large enough to justify the additional complication in the compiler, and • global analysis technology can deal with all the features of "practical" languages (e.g., the ISO-Prolog built-ins) and "scales up" for large programs. We present a tutorial overview of a number of concepts and techniques directly related to the issues above, with special emphasis on the first one. In particular, we concéntrate on novel uses of global analysis during program development and debugging, rather than on the more traditional application área of program optimization. The idea of using abstract interpretation for validation and diagnosis has been studied in the context of imperative programming [2] and also of logic programming. The latter work includes issues such as using approximations to reduce the burden posed on programmers by declarative debuggers [6, 3] and automatically generating and checking assertions [4, 5] (which includes the more traditional type checking of strongly typed languages, such as Gódel or Mercury [1, 8, 9]) We also review some solutions for scalability including modular analysis, incremental analysis, and widening. Finally, we discuss solutions for dealing with meta-predicates, side-effects, delay declarations, constraints, dynamic predicates, and other such features which may appear in practical languages. In the discussion we will draw both from the literature and from our experience and that of others in the development and use of the CIAO system analyzer. In order to emphasize the practical aspects of the solutions discussed, the presentation of several concepts will be illustrated by examples run on the CIAO system, which makes extensive use of global analysis and assertions.