979 resultados para Locomotion, frequency, attractor, exercise, accelerometer
Resumo:
The purpose of the present study was to evaluate the effects of aerobic physical training (APT) on heart rate variability (HRV) and cardiorespiratory responses at peak condition and ventilatory anaerobic threshold. Ten young (Y: median = 21 years) and seven middle-aged (MA = 53 years) healthy sedentary men were studied. Dynamic exercise tests were performed on a cycloergometer using a continuous ramp protocol (12 to 20 W/min) until exhaustion. A dynamic 24-h electrocardiogram was analyzed by time (TD) (standard deviation of mean R-R intervals) and frequency domain (FD) methods. The power spectral components were expressed as absolute (a) and normalized units (nu) at low (LF) and high (HF) frequencies and as the LF/HF ratio. Control (C) condition: HRV in TD (Y: 108, MA: 96 ms; P<0.05) and FD - LFa, HFa - was significantly higher in young (1030; 2589 ms²/Hz) than in middle-aged men (357; 342 ms²/Hz) only during sleep (P<0.05); post-training effects: resting bradycardia (P<0.05) in the awake condition in both groups; VO2 increased for both groups at anaerobic threshold (P<0.05), and at peak condition only in young men; HRV in TD and FD (a and nu) was not significantly changed by training in either groups. The vagal predominance during sleep is reduced with aging. The resting bradycardia induced by short-term APT in both age groups suggests that this adaptation is much more related to intrinsic alterations in sinus node than in efferent vagal-sympathetic modulation. Furthermore, the greater alterations in VO2 than in HRV may be related to short-term APT.
Resumo:
Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.
Resumo:
The present study evaluated functional changes of quadriceps muscle after injury induced by eccentric exercise. Maximal isometric torque of quadriceps and the surface electromyography (root mean square, RMS, and median frequency, MDF) of the vastus medialis oblique (VMO) and vastus lateralis (VL) muscles were examined before, immediately after and during the first 7 days after injury. Serum creatine kinase (CK) levels and magnetic resonance imaging (MRI) were used to identify muscle injury. The subject was used as her own control and percent refers to pre-injury data. Experiments were carried out with a sedentary 23-year-old female. Injury was induced by 4 bouts of 15 maximal isokinetic eccentric contractions (angular velocity of 5º/s; range of motion from 40º to 110º of knee flexion). The isometric torque of the quadriceps (knee at 90º flexion) decreased 52% immediately after eccentric exercise and recovered on the 5th day. The highest reduction of RMS occurred on the 2nd day after injury in both VL (63%) and VMO (66%) and only VL recovered to the pre-injury level on the 7th day. Immediately after injury, the MDF decreased by 5 and 3% (VMO and VL, respectively) and recovered one day later. Serum CK levels increased by 109% on the 2nd day and were still increased by 32% on the 7th day. MRI showed large areas of injury especially in the deep region of quadriceps. In conclusion, eccentric exercise decreased the isometric torque and electromyographic signals of quadriceps muscle, which were recovered in one week, despite the muscle regeneration signals.
Resumo:
Previous studies have demonstrated the high reproducibility of heart rate variability (HRV) measures in adults while little information exists concerning HRV reproducibility in children. Subsequently, the aim of the current study was to examine the moderate-term reproducibility of heart rate and frequency domain measures of HRV during rest and light to moderate exercise in children. Ten healthy children (6 males, 4 females) aged between 7 and 12 years of age volunteered for this study with HRV recordings obtained during supine rest and three treadmill walking exercise work rates (≤60% maximum heart rate), initially and then 8 weeks later. Differences (P < 0.05) between variables were examined using paired t-tests or Wilcoxon signed rank tests while reliability and reproducibility were examined by intraclass correlation coefficients (ICC), coefficients of variation (CV), and mean bias ratio and ratio limits of agreement (LOA). Heart rate and all measures of HRV at rest and exercise were unchanged after 8 weeks. Significant ICC were documented primarily during rest (0.72-0.85) while weaker relationships (-0.02-0.87) were evident during exercise. A large range of CV was identified during rest (6-33%) and exercise (3-128%) while the ratio LOA were variable and substantial (1.04-2.73). Despite similar HRV over an 8-week period, variable ICC and sizable CV and ratio LOA indicate moderate to poor reproducibility of HRV in children, particularly during light to moderate exercise. Studies examining HRV in children should include age- or maturation stage-matched control participants to address the age-related change in HRV and inadequate HRV reliability.
Resumo:
The aim of the present study was to compare heart rate variability (HRV) at rest and during exercise using a temporal series obtained with the Polar S810i monitor and a signal from a LYNX® signal conditioner (BIO EMG 1000 model) with a channel configured for the acquisition of ECG signals. Fifteen healthy subjects aged 20.9 ± 1.4 years were analyzed. The subjects remained at rest for 20 min and performed exercise for another 20 min with the workload selected to achieve 60% of submaximal heart rate. RR series were obtained for each individual with a Polar S810i instrument and with an ECG analyzed with a biological signal conditioner. The HRV indices (rMSSD, pNN50, LFnu, HFnu, and LF/HF) were calculated after signal processing and analysis. The unpaired Student t-test and intraclass correlation coefficient were used for data analysis. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV at rest and during exercise. The intraclass correlation coefficient demonstrated satisfactory correlation between the values obtained by the devices at rest (pNN50 = 0.994; rMSSD = 0.995; LFnu = 0.978; HFnu = 0.978; LF/HF = 0.982) and during exercise (pNN50 = 0.869; rMSSD = 0.929; LFnu = 0.973; HFnu = 0.973; LF/HF = 0.942). The calculation of HRV values by means of temporal series obtained from the Polar S810i instrument appears to be as reliable as those obtained by processing the ECG signal captured with a signal conditioner.
Resumo:
Subjects with chronic obstructive pulmonary disease (COPD) present breathing pattern and thoracoabdominal motion abnormalities that may contribute to exercise limitation. Twenty-two men with stable COPD (FEV1 = 42.6 ± 13.5% predicted; age 68 ± 8 years; mean ± SD) on usual medication and with at least 5 years of diagnosis were evaluated at rest and during an incremental cycle exercise test (10 watts/2 min). Changes in respiratory frequency, tidal volume, rib cage and abdominal motion contribution to tidal volume and the phase angle that measures the asynchrony were analyzed by inductive respiratory plethysmography at rest and during three levels of exercise (30-50, 70-80, and 100% maximal work load). Repeated measures ANOVA followed by pre-planned contrasts and Bonferroni corrections were used for analyses. As expected, the greater the exercise intensity the higher the tidal volume and respiratory frequency. Abdominal motion contributed to the tidal volume increase (rest: 49.82 ± 11.19% vs exercise: 64.15 ± 9.7%, 63.41 ± 10%, and 65.56 ± 10.2%, respectively, P < 0.001) as well as the asynchrony [phase angle: 11.95 ± 7.24° at rest vs 22.2 ± 15° (P = 0.002), 22.6 ± 9° (P < 0.001), and 22.7 ± 8° (P < 0.001), respectively, at the three levels of exercise]. In conclusion, the increase in ventilation during exercise in COPD patients was associated with the major motion of the abdominal compartment and with an increase in the asynchrony independent of exercise intensity. It suggests that cycling exercise is an effective way of enhancing ventilation in COPD patients.
Resumo:
Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 ± 4.2 years; weight: 73.8 ± 7.7 kg; height: 1.79 ± 0.05 m) executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise), immediately after (after-exercise) and after 1 h of recovery (after-recovery). The fatigue test consisted of 60 maximal (100%) or submaximal (40%) dynamic concentric or eccentric knee extensions at an angular velocity of 60°/s. The isometric torque produced by low- (20 Hz) and high- (100 Hz) frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05) differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.
Resumo:
Endothelial function (EF) plays an important role in the onset and clinical course of atherosclerosis, although its relationship with the presence and extent of coronary artery disease (CAD) has not been well defined. We evaluated EF and the ST segment response to an exercise test in patients with a broad spectrum of CAD defined by coronary angiography. Sixty-two patients submitted to diagnostic catheterization for the evaluation of chest pain or ischemia in a provocative test were divided into three groups according to the presence and severity of atherosclerotic lesions (AL): group 1: normal coronaries (N = 19); group 2: CAD with AL <70% (N = 17); group 3: CAD with AL ≥70% (N = 26). EF was evaluated by the percentage of flow-mediated dilatation (%FMD) in the brachial artery during reactive hyperemia induced by occlusion of the forearm with a pneumatic cuff for 5 min. Fifty-four patients were subjected to an exercise test. Gender and age were not significantly correlated with %FMD. EF was markedly reduced in both groups with CAD (76.5 and 73.1% vs 31.6% in group 1) and a higher frequency of ischemic alterations in the ST segment (70.8%) was observed in the group with obstructive CAD with AL ≥70% during the exercise test. Endothelial dysfunction was observed in patients with CAD, irrespective of the severity of injury. A significantly higher frequency of ischemic alterations in the ST segment was observed in the group with obstructive CAD. EF and exercise ECG differed among the three groups and may provide complementary information for the assessment of CAD.
Resumo:
The aim of this study was to test the hypothesis of differences in performance including differences in ST-T wave changes between healthy men and women submitted to an exercise stress test. Two hundred (45.4%) men and 241 (54.6%) women (mean age: 38.7 ± 11.0 years) were submitted to an exercise stress test. Physiologic and electrocardiographic variables were compared by the Student t-test and the chi-square test. To test the hypothesis of differences in ST-segment changes, data were ranked with functional models based on weighted least squares. To evaluate the influence of gender and age on the diagnosis of ST-segment abnormality, a logistic model was adjusted; P < 0.05 was considered to be significant. Rate-pressure product, duration of exercise and estimated functional capacity were higher in men (P < 0.05). Sixteen (6.7%) women and 9 (4.5%) men demonstrated ST-segment upslope ≥0.15 mV or downslope ≥0.10 mV; the difference was not statistically significant. Age increase of one year added 4% to the chance of upsloping of segment ST ≥0.15 mV or downsloping of segment ST ≥0.1 mV (P = 0.03; risk ratio = 1.040, 95% confidence interval (CI) = 1.002-1.080). Heart rate recovery was higher in women (P < 0.05). The chance of women showing an increase of systolic blood pressure ≤30 mmHg was 85% higher (P = 0.01; risk ratio = 1.85, 95%CI = 1.1-3.05). No significant difference in the frequency of ST-T wave changes was observed between men and women. Other differences may be related to different physical conditioning.
Resumo:
We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 μm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 μm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 μm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.
Resumo:
Abstract The reduction of skeletal muscle loss in pathological states, such as muscle disuse, has considerable effects in terms of rehabilitation and quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE) seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power) and structural (hypertrophy and phenotypic changes) adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric) have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals) limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.
Resumo:
In cardiomyocytes, calcium (Ca2+) release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.
Resumo:
The present study aimed to study the effects of exercise training (ET) performed by rats on a 10-week high-fructose diet on metabolic, hemodynamic, and autonomic changes, as well as intraocular pressure (IOP). Male Wistar rats receiving fructose overload in drinking water (100 g/L) were concomitantly trained on a treadmill for 10 weeks (FT group) or kept sedentary (F group), and a control group (C) was kept in normal laboratory conditions. The metabolic evaluation comprised the Lee index, glycemia, and insulin tolerance test (KITT). Arterial pressure (AP) was measured directly, and systolic AP variability was performed to determine peripheral autonomic modulation. ET attenuated impaired metabolic parameters, AP, IOP, and ocular perfusion pressure (OPP) induced by fructose overload (FT vs F). The increase in peripheral sympathetic modulation in F rats, demonstrated by systolic AP variance and low frequency (LF) band (F: 37±2, 6.6±0.3 vs C: 26±3, 3.6±0.5 mmHg2), was prevented by ET (FT: 29±3, 3.4±0.7 mmHg2). Positive correlations were found between the LF band and right IOP (r=0.57, P=0.01) and left IOP (r=0.64, P=0.003). Negative correlations were noted between KITT values and right IOP (r=-0.55, P=0.01) and left IOP (r=-0.62, P=0.005). ET in rats effectively prevented metabolic abnormalities and AP and IOP increases promoted by a high-fructose diet. In addition, ocular benefits triggered by exercise training were associated with peripheral autonomic improvement.
Resumo:
Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.
Resumo:
L’habenula, un noyau épithalamique, est située au centre de la voie dorsale diencéphalique. Cette voie relie les structures limbiques et les ganglions de la base aux cellules monoaminergiques du mésencéphale. En particulier, l’habenula latérale (HbL) projette directement aux cellules dopaminergiques et GABAergiques de l’aire tegmentale ventrale (ATV). L’ATV est le site d’origine de la voie mésolimbique dopaminergique, une voie impliquée de façon cruciale dans la manifestation des comportements dirigés. L’importance de cette projection habenulaire pour le comportement demeure encore méconnue. Ainsi, l’objectif de cette étude est d’approfondir notre compréhension du rôle de régulation de l’HbL sur les comportements dépendants de la neurotransmission dopaminergique. MATÉRIEL ET MÉTHODES: Des rats adultes mâles Sprague-Dawley ont été anesthésiés avec de l’isofluorane et installés sur un appareil stéréotaxique. L’acide iboténique, une neurotoxine agoniste des récepteurs glutamatergiques, était infusée bilatéralement dans l’HbL (0,25 μg/0,25 μl/côté). Les rats du groupe contrôle recevaient des infusions NaCl 0,9%. Les rats de l’expérience d’autostimulation intracérébrale (ASIC) étaient aussi implantés d’une électrode monopolaire dans le mésencéphale postérieur. Un groupe de rats était testé pour leur réponse de locomotion à l’amphétamine (0; 0,5 ou 1 mg/kg, intrapéritonéal), dix jours suivant la lésion de l’HbL. La locomotion était mesurée dans des chambres d’activité, chacune équipée de deux faisceaux parallèles infrarouges. Le jour du test, les rats étaient pesés et placés dans la chambre d’activité puis leur activité locomotrice de base était mesurée pendant une heure. Les rats recevaient ensuite une dose d’amphétamine ou le véhicule (NaCl 0,9%) par voie intrapéritonéale et l’activité locomotrice était mesurée pendant deux heures supplémentaires. Un groupe de rats distinct a été utilisé dans l’expérience d’ASIC. Commençant sept jours suivant la lésion, les rats étaient entraînés à appuyer sur un levier afin de s’autoadministrer des stimulations électriques, au cours de sessions quotidiennes. Nous avons ensuite mesuré chacun des taux de réponses d’une série de stimulations aux fréquences décroissantes. À partir d’une courbe réponses-fréquences, le seuil de récompense était inféré par la fréquence de la stimulation nécessaire pour produire une réponse semi-maximale. Les seuils de récompense étaient stabilisés à un niveau similaire pour l’ensemble des rats. Enfin, l’effet sur la récompense de l’amphétamine était testé aux mêmes doses employées pour l’expérience de locomotion. RÉSULTATS: Une lésion neurotoxique de l’HbL n’a pas altéré les niveaux de base de l’activité locomotrice dans chaque groupe. Cependant, une telle lésion a potentialisé l’effet de locomotion de l’amphétamine (1 mg/kg) pendant la première heure suivant son administration, et une tendance similaire était observable pendant la seconde heure. À l’inverse, nous n’avons observé aucune interaction entre une lésion à l’HbL et l’effet amplificateur sur la récompense de l’amphétamine. CONCLUSION: Nos résultats révèlent une importante contribution fonctionnelle de l’HbL à la locomotion induite par l’activation de la voie mésolimbique dopaminergique avec une dose de 1 mg/kg d’amphétamine. À l’opposé, aucun effet sur la récompense n’a été observé. Ces résultats suggèrent que l’activation psychomotrice et l’amplifiation de la récompense produite par l’amphétamine dépendent de substrats dissociables, chacun étant différentiellement sensible à la modulation provenant de l’HbL.