964 resultados para Locaton of defects
Resumo:
Defects in semiconductor crystals and at their interfaces usually impair the properties and the performance of devices. These defects include, for example, vacancies (i.e., missing crystal atoms), interstitials (i.e., extra atoms between the host crystal sites), and impurities such as oxygen atoms. The defects can decrease (i) the rate of the radiative electron transition from the conduction band to the valence band, (ii) the amount of charge carriers, and (iii) the mobility of the electrons in the conduction band. It is a common situation that the presence of crystal defects can be readily concluded as a decrease in the luminescence intensity or in the current flow for example. However, the identification of the harmful defects is not straightforward at all because it is challenging to characterize local defects with atomic resolution and identification. Such atomic-scale knowledge is however essential to find methods for reducing the amount of defects in energy-efficient semiconductor devices. The defects formed in thin interface layers of semiconductors are particularly difficult to characterize due to their buried and amorphous structures. Characterization methods which are sensitive to defects often require well-defined samples with long range order. Photoelectron spectroscopy (PES) combined with photoluminescence (PL) or electrical measurements is a potential approach to elucidate the structure and defects of the interface. It is essential to combine the PES with complementary measurements of similar samples to relate the PES changes to changes in the interface defect density. Understanding of the nature of defects related to III-V materials is relevant to developing for example field-effect transistors which include a III-V channel, but research is still far from complete. In this thesis, PES measurements are utilized in studies of various III-V compound semiconductor materials. PES is combined with photoluminescence measurements to study the SiO2/GaAs, SiNx/GaAs and BaO/GaAs interfaces. Also the formation of novel materials InN and photoluminescent GaAs nanoparticles are studied. Finally, the formation of Ga interstitial defects in GaAsN is elucidated by combining calculational results with PES measurements.
Resumo:
In cardiomyocytes, calcium (Ca2+) release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.
Resumo:
Press forming is nowadays one of the most common industrial methods in use for producing deeper trays from paperboard. Demands for material properties like recyclability and sustainability have increased also in the packaging industry, but there are still limitations related to the formability of paperboard. A majority of recent studies have focused on material development, but the potential of the package manufacturing process can also be improved by the development of tooling and process control. In this study, advanced converting tools (die cutting tools and the press forming mould) are created for production scale paperboard tray manufacturing. Also monitoring methods that enable the production of paperboard trays with enhanced quality, and can be utilized in process control are developed. The principles for tray blank preparation, including creasing pattern and die cutting tool design are introduced. The mould heating arrangement and determination of mould clearance are investigated to improve the quality of the press formed trays. The effect of the spring back of the tray walls on the tray dimensions can be managed by adjusting the heat-related process parameters and estimating it at the mould design stage. This enables production speed optimization as the process parameters can be adjusted more freely. Real-time monitoring of pressing force by using multiple force sensors embedded in the mould structure can be utilized in the evaluation of material characteristics on a modified production machinery. Comprehensive process control can be achieved with a combination of measurement of the outer dimensions of the trays and pressing force monitoring. The control method enables detection of defects and tracking changes in the material properties. The optimized converting tools provide a basis for effective operation of the control system.
Resumo:
Currently, laser scribing is growing material processing method in the industry. Benefits of laser scribing technology are studied for example for improving an efficiency of solar cells. Due high-quality requirement of the fast scribing process, it is important to monitor the process in real time for detecting possible defects during the process. However, there is a lack of studies of laser scribing real time monitoring. Commonly used monitoring methods developed for other laser processes such a laser welding, are sufficient slow and existed applications cannot be implemented in fast laser scribing monitoring. The aim of this thesis is to find a method for laser scribing monitoring with a high-speed camera and evaluate reliability and performance of the developed monitoring system with experiments. The laser used in experiments is an IPG ytterbium pulsed fiber laser with 20 W maximum average power and Scan head optics used in the laser is Scanlab’s Hurryscan 14 II with an f100 tele-centric lens. The camera was connected to laser scanner using camera adapter to follow the laser process. A powerful fully programmable industrial computer was chosen for executing image processing and analysis. Algorithms for defect analysis, which are based on particle analysis, were developed using LabVIEW system design software. The performance of the algorithms was analyzed by analyzing a non-moving image from the scribing line with resolution 960x20 pixel. As a result, the maximum analysis speed was 560 frames per second. Reliability of the algorithm was evaluated by imaging scribing path with a variable number of defects 2000 mm/s when the laser was turned off and image analysis speed was 430 frames per second. The experiment was successful and as a result, the algorithms detected all defects from the scribing path. The final monitoring experiment was performed during a laser process. However, it was challenging to get active laser illumination work with the laser scanner due physical dimensions of the laser lens and the scanner. For reliable error detection, the illumination system is needed to be replaced.
Resumo:
The growth of the food packaging industry has raised more interest in bio-based fibre packing. The use of petroleum based packages is unfriendly to the environment while bio-based is a sustainable option for food packing. In this Master Thesis the aim was to discover how the press forming machineries runnability is affected by parameters of the press and how it also affects formability of paperboard trays. Familiarisation of the working operation parameters was done with the KAMA ST 75 flat-bed die cutting machine and the VP3-70 mould press. Some small test runs of moulding trays where done to get acquainted to the adjustment parameters of the machines. Literature study was done on how paperboards physical properties react to the forces applied during press forming. The study of what kind of defects to the paperboard tray might occur during forming process and the causes for these defects. Also how the parameters of the press forming machine affects formability of the tray. Maintenance procedures was done to the press forming machine to enhance the reliably of production process. Tool alignment measurement was done to determine proper alignment. Laboratory test of the physical properties of the test material was done to find any connection to how the test material performs in press forming. An evaluation criterion was made to evaluate the dimensions and defects of the tray. From the test result a conclusion can be drawn on how the parameters of the press forming process affect the paperboard material. Based on the results the adjustment the parameters of moulding machines to the mechanical properties of paperboard it is possible to produce high quality fibre passed trays for the food packaging industry.
Resumo:
Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.
Resumo:
The photoacoustic investigations carried out on different photonic materials are presented in this thesis. Photonic materials selected for the investigation are tape cast ceramics, muItilayer dielectric coatings, organic dye doped PVA films and PMMA matrix doped with dye mixtures. The studies are performed by the measurement of photoacoustic signal generated as a result of modulated cw laser irradiation of samples. The gas-microphone scheme is employed for the detection of photoacoustic signal. The different measurements reported here reveal the adaptability and utility of the PA technique for the characterization of photonic materials.Ceramics find applications in the field of microelectronics industry. Tape cast ceramics are the building blocks of many electronic components and certain ceramic tapes are used as thermal barriers. The thermal parameters of these tapes will not be the same as that of thin films of the same materials. Parameters are influenced by the presence of foreign bodies in the matrix and the sample preparation technique. Measurements are done on ceramic tapes of Zirconia, Zirconia-Alumina combination, barium titanate, barium tin titanate, silicon carbide, lead zirconate titanateil'Z'T) and lead magnesium niobate titanate(PMNPT). Various configurations viz. heat reflection geometry and heat transmission geometry of the photoacoustic technique have been used for the evaluation of different thermal parameters of the sample. Heat reflection geometry of the PA cell has been used for the evaluation of thermal effusivity and heat transmission geometry has been made use of in the evaluation of thermal diffusivity. From the thermal diffusivity and thermal effusivity values, thermal conductivity is also calculated. The calculated values are nearly the same as the values reported for pure materials. This shows the feasibility of photoacoustic technique for the thermal characterization of ceramic tapes.Organic dyes find applications as holographic recording medium and as active media for laser operations. Knowledge of the photochemical stability of the material is essential if it has to be used tor any of these applications. Mixing one dye with another can change the properties of the resulting system. Through careful mixing of the dyes in appropriate proportions and incorporating them in polymer matrices, media of required stability can be prepared. Investigations are carried out on Rhodamine 6GRhodamine B mixture doped PMMA samples. Addition of RhB in small amounts is found to stabilize Rh6G against photodegradation and addition of Rh6G into RhB increases the photosensitivity of the latter. The PA technique has been successfully employed for the monitoring of dye mixture doped PMMA sample. The same technique has been used for the monitoring of photodegradation ofa laser dye, cresyl violet doped polyvinyl alcohol also.Another important application of photoacoustic technique is in nondestructive evaluation of layered samples. Depth profiling capability of PA technique has been used for the non-destructive testing of multilayer dielectric films, which are highly reflecting in the wavelength range selected for investigations. Eventhough calculation of thickness of the film is not possible, number of layers present in the system can be found out using PA technique. The phase plot has clear step like discontinuities, the number of which coincides with the number of layers present in the multilayer stack. This shows the sensitivity of PA signal phase to boundaries in a layered structure. This aspect of PA signal can be utilized in non-destructive depth profiling of reflecting samples and for the identification of defects in layered structures.
Resumo:
In this work we present the results of our attempt to build a compact photothermal spectrometer capable of both manual and automated mode of operation.The salient features of the system include the ability to analyse thin film, powder and polymer samples. The tool has been in use to investigate thermal, optical and transport properties. Binary and ternary semiconducting thin films were analysed for their thermal diffusivities. The system could perform thickness measurements nondestructively. Ion implanted semiconductors are widely studied for the effect of radiation induced defects. We could perform nondestructive imaging of defects using our spectrometer.The results reported in his thesis on the above in addition to studies on In2S3 and transparent conducting oxide ZnO have been achieved with this spectrometer. Various polymer samples have been easily analysed for their thermal diffusivities. The technique provided ease of analysis not achieved with conventional techniques like TGA and DSC. Industrial application of the tool has also been proved by analyzing defects of welded joints and adhesion of paints. Indigenization of the expensive lock-in-amplifier and automation has been the significant achievement in the course of this dissertation. We are on our way to prove the noise rejection capabilities of our PC LIA.
Resumo:
This thesis has focused on the synthesis and analysis of some important phosphors (nano, bulk and thin film) for display applications. ACTFEL device with SrS:Cu as active layer was also fabricated.Three bulk phosphors: SrS:Cu,CI; SrS:Dy,Cl; and SrS:Dy,Cu,Cl were synthesized and their structural, optical and electrical properties were investigated. Special emphasis was given to, the analysis of the role of defects and charge compensating centers, on the structural changes of the host and hence the luminance. A new model describing the sensitizing behaviour of Cu in SrS:Dy,Cu,Cl two component phosphor was introduced. It was also found that addition of NH4CI as flux in SrS:Cu caused tremendous improvement in the structural and luminescence properties.A novel technique for ACTFEL phosphor deposition at low temperature was introduced. Polycrystalline films of SrS:Cu,F were synthesized at low temperature by concomitant evaporation of host and dopant by electron beam evaporation and thermal evaporatin methods.Copper doped strontium sulphide nanophosphor was synthesized for the first time. Improvement in the luminescence properties was observed in the nanophosphor with respect to it' s bulk counterpart.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
The physical properties of solid matter are basically influenced by the existence of lattice defects; as a result the study of crystal defects has assumed a central position in solid state physics and materials science. The study of dislocations ixa single crystals can yield a great deal of information on the mechanical properties of materials. In order to secure a full understanding of the processes taking place in semiconducting materials, it is important to investigate the microhardness of these materials-—the most reliable method of determining the fine structure of crystals, the revelation of micro—inhomogenities in the distribution of impurities, the effect of dislocation density on the mechanical properties of crystals etc. Basically electrical conductivity in single crystals is a defect controlled phenomenon and hence detailed investigation of the electrical properties of these materials is one of the best available methods for the study of defects in them. In the present thesis a series of detailed studies carried out in Te—Se system, Bi2Te3 and In2Te3 crystals using surface topographical, dislocation and microindentation analysis as well as electrical measurements are presented
Resumo:
ZnO thin films were coated on amorphous glass substrate at various temperatures in the range 160-500 0C by spray pyrolysis method. The as deposited films were characterised by using XRD and SEM. Wurtzite phase of ZnO was formed at a substrate temperature of 400 0C, highly oriented (002) phase was developed with respect to increase of substrate temperature from 450 to 500 0C. Morphological and growth mode of these films were analyzed with respect to structural orientation of films from wurtzite to highly (002) oriented phase. Present study reveals that substrate temperature was one of the important parameters which determine the crystalline quality, population of defects, grain size, orientation and morphology of the films
Resumo:
Earthworms of the family Lumbricidae, which includes many common species, produce and secrete up to millimeter-sized calcite granules, and the intricate fine-scale zoning of their constituent crystals is unique for a biomineral. Granule calcite is produced by crystallization of amorphous calcium carbonate (ACC) that initially precipitates within the earthworm calciferous glands, then forms protogranules by accretion on quartz grain cores. Crystallization of ACC is mediated by migrating fluid films and is largely complete within 24 11 of ACC production and before granules leave the earthworm. Variations in the density of defects formed as a byproduct of trace element incorporation during calcite crystall growth have generated zoning that can be resolved by cathodoluminescence imaging at ultraviolet to blue wavelengths and using the novel technique of scanning electron microscope charge contrast imaging. Mapping of calcite crystal orientations by electron backscatter diffraction reveals an approximate radial fabric to the granules that reflects crystal growth from internal nucleation sites toward their margins. The survival within granules of ACC inclusions for months after they enter soils indicates that they crystallize only within the earthworm and in the presence of fluids containing biochemical catalysts. The earthworm probably promotes crystallization of ACC in order to prevent remobilization of the calcium carbonate by dissolution. Calcite granules vividly illustrate the role of transient precursors in biomineralization, but the underlying question of why earth-worms produce granules in volumes sufficient to have a measurable impact on soil carbon cycling remains to be answered.
Resumo:
Rolling Contact Fatigue (RCF) is one of the main issues that concern, at least initially, the head of the railway; progressively they can be of very high importance as they can propagate inside the material with the risk of damaging the railway. In this work, two different non-destructive techniques, infrared thermography (IRT) and fibre optics microscopy (FOM), were used in the inspection of railways for the tracing of defects and deterioration signs. In the first instance, two different approaches (dynamic and pulsed thermography) were used, whilst in the case of FOM, microscopic characterisation of the railway heads and classification of the deterioration -- damage on the railways according to the UIC (International Union of Railways) code, took place. Results from both techniques are presented and discussed.
Resumo:
House builders play a key role in controlling the quality of new homes in the UK. The UK house building sector is, however, currently facing pressures to expand supply as well as conform to tougher low carbon planning and Building Regulation requirements; primarily in the areas of sustainability. There is growing evidence that the pressure the UK house building industry is currently under may be eroding build quality and causing an increase in defects. It is found that the prevailing defect literature is limited to the causes, pathology and statistical analysis of defects (and failures). The literature does not extend to examine how house builders individually and collectively, in practice, collect and learn from defects experience in order to reduce the prevalence of defects in future homes. The theoretical lens for the research is organisational learning. This paper contributes to our understanding of organisational learning in construction through a synthesis of current literature. Further, a suitable organisational learning model is adopted. The paper concludes by reporting the research design of an ongoing collaborative action research project with the National House Building Council (NHBC), focused on developing a better understanding of house builders’ localised defects analysis procedures and learning processes.