930 resultados para Local optimization algorithms
Resumo:
Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.
Resumo:
The demand of highest quality foods in terms of taste and their properties preservation without the use of additives is constantly increasing. Consequently, new approaches to food processing have been developed, as for example high-pressure technology which has proven to be very valuable because it allows to maintain good properties of food like some vitamins and, at the same time, to reduce some undesirable bacteria. This technology avoids the use of high temperatures during the process (not like Pasteurization), which may have adverse effect on some nutritional properties of the food, its flavour, etc. The models for some enzymatic inactivations, which depend on the pressure and temperature profiles are presented. This work deals with the optimization of the inactivation of certain enzymes when high pressure treatment on food processing is applied. The optimization algorithms will minimize the inactivation not only of a certain isolated enzyme but also to several enzymes that can be involved simultaneously in the high-pressure process.
Resumo:
A servo-controlled automatic machine can perform tasks that involve synchronized actuation of a significant number of servo-axes, namely one degree-of-freedom (DoF) electromechanical actuators. Each servo-axis comprises a servo-motor, a mechanical transmission and an end-effector, and is responsible for generating the desired motion profile and providing the power required to achieve the overall task. The design of a such a machine must involve a detailed study from a mechatronic viewpoint, due to its electric and mechanical nature. The first objective of this thesis is the development of an overarching electromechanical model for a servo-axis. Every loss source is taken into account, be it mechanical or electrical. The mechanical transmission is modeled by means of a sequence of lumped-parameter blocks. The electric model of the motor and the inverter takes into account winding losses, iron losses and controller switching losses. No experimental characterizations are needed to implement the electric model, since the parameters are inferred from the data available in commercial catalogs. With the global model at disposal, a second objective of this work is to perform the optimization analysis, in particular, the selection of the motor-reducer unit. The optimal transmission ratios that minimize several objective functions are found. An optimization process is carried out and repeated for each candidate motor. Then, we present a novel method where the discrete set of available motor is extended to a continuous domain, by fitting manufacturer data. The problem becomes a two-dimensional nonlinear optimization subject to nonlinear constraints, and the solution gives the optimal choice for the motor-reducer system. The presented electromechanical model, along with the implementation of optimization algorithms, forms a complete and powerful simulation tool for servo-controlled automatic machines. The tool allows for determining a wide range of electric and mechanical parameters and the behavior of the system in different operating conditions.
Resumo:
The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented embankment section along Secchia River (Cavezzo (MO)) in the period from 2017 to 2018 and the quantification of the performance of the direct and indirect simulations . The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different soil-hydraulic models have been adopted and compared. The parameters of the different hydraulic models are calibrated using a local optimization method based on the Levenberg - Marquardt algorithm implemented in the Hydrus package. The calibration program is carried out using different types of dataset of observation points, different weighting distributions, different combinations of optimized parameters and different initial sets of parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when applied to a complex geotechnical problem as the case study. The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil belongs to the West Charlestown Bypass embankment, Newcastle, Australia, that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia. The research activity included the design and realization of a specific large scale apparatus for laboratory experiments. Local suction measurements at certain intervals of depth and radial distances from the root bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments are then reproduced numerically using the commercial code Hydrus 2D. Laboratory data are used to calibrate the RWU parameters and the parameters of the hydraulic model.
Resumo:
We present a fast method for finding optimal parameters for a low-resolution (threading) force field intended to distinguish correct from incorrect folds for a given protein sequence. In contrast to other methods, the parameterization uses information from >10(7) misfolded structures as well as a set of native sequence-structure pairs. In addition to testing the resulting force field's performance on the protein sequence threading problem, results are shown that characterize the number of parameters necessary for effective structure recognition.
Resumo:
Talvez não seja nenhum exagero afirmar que há quase um consenso entre os praticantes da Termoeconomia de que a exergia, ao invés de só entalpia, seja a magnitude Termodinâmica mais adequada para ser combinada com o conceito de custo na modelagem termoeconômica, pois esta leva em conta aspectos da Segunda Lei da Termodinâmica e permite identificar as irreversibilidades. Porém, muitas vezes durante a modelagem termoeconômica se usa a exergia desagregada em suas parcelas (química, térmica e mecânica), ou ainda, se inclui a neguentropia que é um fluxo fictício, permitindo assim a desagregação do sistema em seus componentes (ou subsistemas) visando melhorar e detalhar a modelagem para a otimização local, diagnóstico e alocação dos resíduos e equipamentos dissipativos. Alguns autores também afirmam que a desagregação da exergia física em suas parcelas (térmica e mecânica) permite aumentar a precisão dos resultados na alocação de custos, apesar de fazer aumentar a complexidade do modelo termoeconômico e consequentemente os custos computacionais envolvidos. Recentemente alguns autores apontaram restrições e possíveis inconsistências do uso da neguentropia e deste tipo de desagregação da exergia física, propondo assim alternativas para o tratamento de resíduos e equipamentos dissipativos que permitem a desagregação dos sistemas em seus componentes. Estas alternativas consistem, basicamente, de novas propostas de desagregação da exergia física na modelagem termoeconômica. Sendo assim, este trabalho tem como objetivo avaliar as diferentes metodologias de desagregação da exergia física para a modelagem termoeconômica, tendo em conta alguns aspectos como vantagens, restrições, inconsistências, melhoria na precisão dos resultados, aumento da complexidade e do esforço computacional e o tratamento dos resíduos e equipamentos dissipativos para a total desagregação do sistema térmico. Para isso, as diferentes metodologias e níveis de desagregação da exergia física são aplicados na alocação de custos para os produtos finais (potência líquida e calor útil) em diferentes plantas de cogeração considerando como fluido de trabalho tanto o gás ideal bem como o fluido real. Plantas essas com equipamentos dissipativos (condensador ou válvula) ou resíduos (gases de exaustão da caldeira de recuperação). Porém, foi necessário que uma das plantas de cogeração não incorporasse equipamentos dissipativos e nem caldeira de recuperação com o intuito de avaliar isoladamente o efeito da desagregação da exergia física na melhoria da precisão dos resultados da alocação de custos para os produtos finais.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.
Resumo:
Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância
Resumo:
A liberalização dos mercados de energia e a utilização intensiva de produção distribuída tem vindo a provocar uma alteração no paradigma de operação das redes de distribuição de energia elétrica. A continuidade da fiabilidade das redes de distribuição no contexto destes novos paradigmas requer alterações estruturais e funcionais. O conceito de Smart Grid vem permitir a adaptação das redes de distribuição ao novo contexto. Numa Smart Grid os pequenos e médios consumidores são chamados ao plano ativo das participações. Este processo é conseguido através da aplicação de programas de demand response e da existência de players agregadores. O uso de programas de demand response para alcançar benefícios para a rede encontra-se atualmente a ser estudado no meio científico. Porém, existe a necessidade de estudos que procurem benefícios para os pequenos e médios consumidores. O alcance dos benefícios para os pequenos e médios consumidores não é apenas vantajoso para o consumidor, como também o é para a rede elétrica de distribuição. A participação, dos pequenos e médios consumidores, em programas de demand response acontece significativamente através da redução de consumos energéticos. De modo a evitar os impactos negativos que podem provir dessas reduções, o trabalho aqui proposto faz uso de otimizações que recorrem a técnicas de aprendizagem através da utilização redes neuronais artificiais. Para poder efetuar um melhor enquadramento do trabalho com as Smart Grids, será desenvolvido um sistema multiagente capaz de simular os principais players de uma Smart Grid. O foco deste sistema multiagente será o agente responsável pela simulação do pequeno e médio consumidor. Este agente terá não só que replicar um pequeno e médio consumidor, como terá ainda que possibilitar a integração de cargas reais e virtuais. Como meio de interação com o pequeno e médio consumidor, foi desenvolvida no âmbito desta dissertação um sistema móvel. No final do trabalho obteve-se um sistema multiagente capaz de simular uma Smart Grid e a execução de programas de demand response, sSendo o agente representante do pequeno e médio consumidor capaz de tomar ações e reações de modo a poder responder autonomamente aos programas de demand response lançados na rede. O desenvolvimento do sistema permite: o estudo e análise da integração dos pequenos e médios consumidores nas Smart Grids por meio de programas de demand response; a comparação entre múltiplos algoritmos de otimização; e a integração de métodos de aprendizagem. De modo a demonstrar e viabilizar as capacidades de todo o sistema, a dissertação inclui casos de estudo para as várias vertentes que podem ser exploradas com o sistema desenvolvido.
Resumo:
Report for the scientific sojourn at the University of California at Berkeley between September 2007 to February 2008. The globalization combined with the success of containerization has brought about tremendous increases in the transportation of containers across the world. This leads to an increasing size of container ships which causes higher demands on seaport container terminals and their equipment. In this situation, the success of container terminals resides in a fast transhipment process with reduced costs. For these reasons it is necessary to optimize the terminal’s processes. There are three main logistic processes in a seaport container terminal: loading and unloading of containerships, storage, and reception/deliver of containers from/to the hinterland. Moreover there is an additional process that ensures the interconnection between previous logistic activities: the internal transport subsystem. The aim of this paper is to optimize the internal transport cycle in a marine container terminal managed by straddle carriers, one of the most used container transfer technologies. Three sub-systems are analyzed in detail: the landside transportation, the storage of containers in the yard, and the quayside transportation. The conflicts and decisions that arise from these three subsystems are analytically investigated, and optimization algorithms are proposed. Moreover, simulation has been applied to TCB (Barcelona Container Terminal) to test these algorithms and compare different straddle carrier’s operation strategies, such as single cycle versus double cycle, and different sizes of the handling equipment fleet. The simulation model is explained in detail and the main decision-making algorithms from the model are presented and formulated.
Resumo:
INTRODUCTION: In November 2009, the "3rd Summit on Osteoporosis-Central and Eastern Europe (CEE)" was held in Budapest, Hungary. The conference aimed to tackle issues regarding osteoporosis management in CEE identified during the second CEE summit in 2008 and to agree on approaches that allow most efficient and cost-effective diagnosis and therapy of osteoporosis in CEE countries in the future. DISCUSSION: The following topics were covered: past year experience from FRAX® implementation into local diagnostic algorithms; causes of secondary osteoporosis as a FRAX® risk factor; bone turnover markers to estimate bone loss, fracture risk, or monitor therapies; role of quantitative ultrasound in osteoporosis management; compliance and economical aspects of osteoporosis; and osteoporosis and genetics. Consensus and recommendations developed on these topics are summarised in the present progress report. CONCLUSION: Lectures on up-to-date data of topical interest, the distinct regional provenances of the participants, a special focus on practical aspects, intense mutual exchange of individual experiences, strong interest in cross-border cooperations, as well as the readiness to learn from each other considerably contributed to the establishment of these recommendations. The "4th Summit on Osteoporosis-CEE" held in Prague, Czech Republic, in December 2010 will reveal whether these recommendations prove of value when implemented in the clinical routine or whether further improvements are still required.
Resumo:
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.