935 resultados para Lipoprotein (a)
Resumo:
We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.
Resumo:
Background/Aim: Lipoprotein lipase (LPL) is the main enzyme responsible for the distribution of circulating triacylglycerides in tissues. Its regulation via release from active sites in the vascular endothelium is poorly understood. In a previous study we reported that in response to acute immobilization (IMMO), LPL activity rapidly increases in plasma and decreases in white adipose tissue (WAT) in rats. In other stress situations IMMO triggers a generalized increase in nitric oxide (NO) production. Methods/Results: Here we demonstrate that in rats: 1) in vivo acute IMMO rapidly increases NO concentrations in plasma 2) during acute IMMO the WAT probably produces NO via the endothelial isoform of nitric oxide synthase (eNOS) from vessels, and 3) epididymal WAT perfused in situ with an NO donor rapidly releases LPL from the endothelium. Conclusion: We propose the following chain of events: stress stimulus / rapid increase of NO production in WAT (by eNOS) / release of LPL from the endothelium in WAT vessels. This chain of events could be a new mechanism that promotes the rapid decrease of WAT LPL activity in response to a physiological stimulus.
Resumo:
24S- and 27-hydroxycholesterol are obligatory intermediates of cholesterol catabolism and play an important role in the maintenance of whole-body cholesterol homeostasis. Using an HPLC-MS method for oxysterol quantification, the distribution of esterified and unesterified oxysterols in lipoprotein subfractions as well as the influence of daytime, food intake and menstrual cycle on oxysterol concentrations were investigated in healthy volunteers. Moreover, reference intervals for 24S- and 27-hydroxycholesterol in plasma as well as the corresponding levels for 27-hydroxycholesterol in the HDL subfraction were established in 100 healthy volunteers. Both circulating oxysterols are mainly transported in association with HDL and LDL--primarily in the esterified form. No significant diurnal changes and no variations during menstrual cycle of either absolute or cholesterol-related plasma levels were detected. In contrast to 24S-hydroxycholesterol in plasma and 27-hydroxycholesterol in the HDL subfraction, the 95% reference intervals of 27-hydroxycholesterol both in plasma and the non-HDL subfraction were higher in males than in females. The concentrations of 27-hydroxycholesterol in plasma and the non-HDL subfraction showed strong positive correlations with the concentrations of cholesterol, non-HDL cholesterol and triglycerides. Our data on the lipoprotein distribution of oxysterols as well as on their intra- and inter-individual variation set the stage for future clinical studies.
Resumo:
We characterized lipid and lipoprotein changes associated with a lopinavir/ritonavir-containing regimen. We enrolled previously antiretroviral-naive patients participating in the Swiss HIV Cohort Study. Fasting blood samples (baseline) were retrieved retrospectively from stored frozen plasma and posttreatment (follow-up) samples were collected prospectively at two separate visits. Lipids and lipoproteins were analyzed at a single reference laboratory. Sixty-five patients had two posttreatment lipid profile measurements and nine had only one. Most of the measured lipids and lipoprotein plasma concentrations increased on lopinavir/ritonavir-based treatment. The percentage of patients with hypertriglyceridemia (TG >150 mg/dl) increased from 28/74 (38%) at baseline to 37/65 (57%) at the second follow-up. We did not find any correlation between lopinavir plasma levels and the concentration of triglycerides. There was weak evidence of an increase in small dense LDL-apoB during the first year of treatment but not beyond 1 year (odds ratio 4.5, 90% CI 0.7 to 29 and 0.9, 90% CI 0.5 to 1.5, respectively). However, 69% of our patients still had undetectable small dense LDL-apoB levels while on treatment. LDL-cholesterol increased by a mean of 17 mg/dl (90% CI -3 to 37) during the first year of treatment, but mean values remained below the cut-off for therapeutic intervention. Despite an increase in the majority of measured lipids and lipoproteins particularly in the first year after initiation, we could not detect an obvious increase of cardiovascular risk resulting from the observed lipid changes.
Resumo:
The effectiveness of lipid-lowering medication critically depends on the patients' compliance and the efficacy of the prescribed drug. The primary objective of this multicentre study was to compare the efficacy of rosuvastatin with or without access to compliance initiatives, in bringing patients to the Joint European Task Force's (1998) recommended low-density lipoprotein cholesterol (LDL-C) level goal (LDL-C, <3.0 mmol/L) at week 24. Secondary objectives were comparison of the number and percentage of patients achieving European goals (1998, 2003) for LDL-C and other lipid parameters. Patients with primary hypercholesterolaemia and a 10-year coronary heart disease risk of >20% received open label rosuvastatin treatment for 24 weeks with or without access to compliance enhancement tools. The initial daily dosage of 10 mg could be doubled at week 12. Compliance tools included: a) a starter pack for subjects containing a videotape, an educational leaflet, a passport/goal diary and details of the helpline and/or website; b) regular personalised letters to provide message reinforcement; c) a toll-free helpline and a website. The majority of patients (67%) achieved the 1998 European goal for LDL-C at week 24. 31% required an increase in dosage of rosuvastatin to 20 mg at week 12. Compliance enhancement tools did not increase the number of patients achieving either the 1998 or the 2003 European target for plasma lipids. Rosuvastatin was well tolerated during this study. The safety profile was comparable with other drugs of the same class. 63 patients in the 10 mg group and 58 in the 10 mg Plus group discontinued treatment. The main reasons for discontinuation were adverse events (39 patients in the 10 mg group; 35 patients in the 10 mg Plus group) and loss to follow-up (13 patients in the 10 mg group; 9 patients in the 10 mg Plus group). The two most frequently reported adverse events were myalgia (34 patients, 3% respectively) and back pain (23 patients, 2% respectively). The overall rate of temporary or permanent study discontinuation due to adverse events was 9% (n = 101) in patients receiving 10 mg rosuvastatin and 3% (n = 9) in patients titrated up to 20 mg rosuvastatin. Rosuvastatin was effective in lowering LDL-C values in patients with hypercholesterolaemia to the 1998 European target at week 24. However, compliance enhancement tools did not increase the number of patients achieving any European targets for plasma lipids.
Resumo:
AIMS/HYPOTHESIS: We explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function. MATERIALS AND METHODS: Isolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Prolonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL. CONCLUSIONS/INTERPRETATION: These data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.
Resumo:
Various studies suggest that oxidative modifications of low density lipoprotein (LDL), and also other lipoproteins, have an important role in the development of atherosclerosis. In addition to the oxidation products formed endogenously, oxidised triacylglycerols (TAG) and oxysterols in the diet contribute to the oxidised lipoproteins found in circulation. However, studies on both the effect of oxidised dietary lipids on lipoprotein lipid oxidation and the reactions that modify oxidised fat after ingestion have been scarce. Studies on the effects of dietary antioxidants on the lipid oxidation in vivo and the risk of atherosclerosis have been inconclusive. More clinical trials are needed to test the importance of lipoprotein oxidation as a cardiovascular risk factor in humans. In the recent years, various methods have been optimised and applied to the analysis of lipid oxidation products in vivo, and information on the molecular structures of oxidised lipids in plasma, lipoproteins and atherosclerotic plaques has started to accumulate. However, specific structures of oxidised TAG molecules present in these tissues and lipoprotein fractions have not been investigated earlier. In the orginal research in this thesis, an approach based on highperformance liquid chromatographyelectrospray ionisationmass spectrometry (HPLCESIMS) and baseline diene conjugation (BDC) methods was used in order to investigate lipid oxidation level and oxidised TAG molecular structures in pig and human lipoproteins after dietary interventions. The approach was optimised with human LDL samples, which contained various oxidation products of TAG. LDL particles of hyperlipidaemic subjects contained an elevated amount of conjugated dienes. In the pig studies, several oxidised TAG structures with hydroxy, keto, epoxy or aldehydic groups were found in chylomicrons and VLDL after diets rich in sunflower seed oil. Also, the results showed that oxidised sunflower seed oil increased the oxidation of lipoprotein lipids and their TAG molecules. TAG hydroperoxides could be detected neither in the small intestinal mucosa of the pigs fed on the oxidised oil nor in their chylomicrons or VLDL.6 In the clinical studies, dietary flavonol aglycones extracted from sea buckthorn berries did not have an effect on lipoprotein lipid oxidation and other potential risk factors of atherosclerosis, but their absorption was demonstrated. Oil supplementation seemed to increase the bioavailability of the flavonols. Oxidised TAG molecules were detected in LDL particles of the subjects after both flavonol and control diets.
Resumo:
Objectives: General population studies have shown associations between copy number variation (CNV) of the LPA gene Kringle-IV type-2 (KIV-2) coding region, single-nucleotide polymorphism (SNP) rs6415084 in LPA and coronary heart disease (CHD). Because risk factors for HIV-infected patients may differ from the general population, we aimed to assess whether these potential associations also occur in HIV-infected patients. Methods: A unicenter, retrospective, case-control (1:3) study. Eighteen HIV-patients with confirmed diagnosis of acute myocardial infarction (AMI) were adjusted for age, gender, and time since HIV diagnosis to 54 HIV-patients without CHD. After gDNA extraction from frozen blood, both CNV and SNP genotyping were performed using real-time quantitative PCR. All genetic and non-genetic variables for AMI were assessed in a logistic regression analysis. Results: Our results did not confirm any association in terms of lipoprotein(a) LPA structural genetic variants when comparing KIV-2 CNV (p = 0.67) and SNP genotypes (p = 0.44) between AMI cases and controls. However, traditional risk factors such as diabetes mellitus, hypertension, and CD4(+) T cell count showed association (p < 0.05) with CHD. Conclusion: Although significant associations of AMI with diabetes, hypertension and CD4(+) T cell count in HIV-patients were found, this study could not confirm the feasibility neither of KIV-2 CNV nor rs6415084 in LPA as genetic markers of CHD in HIV-infected patients.Highlights:● Individuals with HIV infection are at higher risk of coronary heart disease (CHD) than the non-infected population.● Our results showed no evidence of LPA structural genetic variants associated with CHD in HIV-1-infected patients.● Associations were found between diabetes mellitus, arterial hypertension, CD4(+) T cell count, and CHD.● The clinical usefulness of these biomarkers to predict CHD in HIV-1-infected population remains unproven.● Further studies are needed to assess the contribution of common genetic variations to CHD in HIV-infected individuals.
Resumo:
Olive oil decreases the risk of CVD. This effect may be due to the fatty acid profile of the oil, but it may also be due to its antioxidant content which differs depending on the type of olive oil. In this study, the concentrations of oleic acid and antioxidants (phenolic compounds and vitamin E) in plasma and LDL were compared after consumption of three similar olive oils, but with differences in their phenolic content. Thirty healthy volunteers participated in a placebo-controlled, double-blind, crossover, randomized supplementation trial. Virgin, common, and refined olive oils were administered during three periods of 3 weeks separated by a 2-week washout period. Participants were requested to ingest a daily dose of 25 ml raw olive oil, distributed over the three meals of the day, during intervention periods. All three olive oils caused an increase in plasma and LDL oleic acid (P,0·05) content. Olive oils rich in phenolic compounds led to an increase in phenolic compounds in LDL (P,0·005). The concentration of phenolic compounds in LDL was directly correlated with the phenolic concentration in the olive oils. The increase in the phenolic content of LDL could account for the increase of the resistance of LDL to oxidation, and the decrease of the in vivo oxidized LDL, observed in the frame of this trial. Our results support the hypothesis that a daily intake of virgin olive oil promotes protective LDL changes ahead of its oxidation.
Resumo:
BACKGROUND: Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan sulfate. It is not known how this enzyme is turned over but it has been suggested that it is slowly released into blood and then taken up and degraded in the liver. Heparin releases the enzyme into the circulating blood. Several lines of evidence indicate that this leads to accelerated flux of LPL to the liver and a temporary depletion of the enzyme in peripheral tissues. RESULTS: Rat livers were found to contain substantial amounts of LPL, most of which was catalytically inactive. After injection of heparin, LPL mass in liver increased for at least an hour. LPL activity also increased, but not in proportion to mass, indicating that the lipase soon lost its activity after being bound/taken up in the liver. To further study the uptake, bovine LPL was labeled with 125I and injected. Already two min after injection about 33 % of the injected lipase was in the liver where it initially located along sinusoids. With time the immunostaining shifted to the hepatocytes, became granular and then faded, indicating internalization and degradation. When heparin was injected before the lipase, the initial immunostaining along sinusoids was weaker, whereas staining over Kupffer cells was enhanced. When the lipase was converted to inactive before injection, the fraction taken up in the liver increased and the lipase located mainly to the Kupffer cells. CONCLUSIONS: This study shows that there are heparin-insensitive binding sites for LPL on both hepatocytes and Kupffer cells. The latter may be the same sites as those that mediate uptake of inactive LPL. The results support the hypothesis that turnover of endothelial LPL occurs in part by transport to and degradation in the liver, and that this transport is accelerated after injection of heparin.
Resumo:
Lipoprotein Lp(a) is a major and independent genetic risk factor for atherosclerosis and cardiovascular disease. The essential difference between Lp(a) and low density lipoproteins (LDL) is apolipoprotein apo(a), a glycoprotein structurally similar to plasminogen, the precursor of plasmin, the fibrinolytic enzyme. This structural homology endows Lp(a) with the capacity to bind to fibrin and to membrane proteins of endothelial cells and monocytes, and thereby to inhibit plasminogen binding and plasmin generation. The inhibition of plasmin generation and the accumulation of Lp(a) on the surface of fibrin and cell membranes favor fibrin and cholesterol deposition at sites of vascular injury. Moreover, insufficient activation of TGF-ß due to low plasmin activity may result in migration and proliferation of smooth muscle cells into the vascular intima. These mechanisms may constitute the basis of the athero-thrombogenic mode of action of Lp(a). It is currently accepted that this effect of Lp(a) is linked to its concentration in plasma. An inverse relationship between Lp(a) concentration and apo(a) isoform size, which is under genetic control, has been documented. Recently, it has been shown that inhibition of plasminogen binding to fibrin by apo(a) is also inversely associated with isoform size. Specific point mutations may also affect the lysine-binding function of apo(a). These results support the existence of functional heterogeneity in apolipoprotein(a) isoforms and suggest that the predictive value of Lp(a) as a risk factor for vascular occlusive disease would depend on the relative concentration of the isoform with the highest affinity for fibrin
Resumo:
Familial hypercholesterolemia (FH) is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL) level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12), AvaII (exon 13) and PvuII (intron 15), in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII), H+H+ (HincII1773) and P1P1 (PvuII) homozygous genotypes when compared to the control group (P<0.05). In addition, FH probands presented a high frequency of A+ (0.58), H+ (0.61) and P1 (0.78) alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively). The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.
Resumo:
Etofibrate is a hybrid drug which combines niacin with clofibrate. After contact with plasma hydrolases, both constituents are gradually released in a controlled-release manner. In this study, we compared the effects of etofibrate and controlled-release niacin on lipid profile and plasma lipoprotein (a) (Lp(a)) levels of patients with triglyceride levels of 200 to 400 mg/dl, total cholesterol above 240 mg/dl and Lp(a) above 40 mg/dl. These patients were randomly assigned to a double-blind 16-week treatment period with etofibrate (500 mg twice daily, N = 14) or niacin (500 mg twice daily, N = 11). In both treatment groups total cholesterol, VLDL cholesterol and triglycerides were equally reduced and high-density lipoprotein cholesterol was increased. Etofibrate, but not niacin, reduced Lp(a) by 26% and low-density lipoprotein (LDL) cholesterol by 23%. The hybrid compound etofibrate produced a more effective reduction in plasma LDL cholesterol and Lp(a) levels than controlled-release niacin in type IIb dyslipidemic subjects.
Resumo:
Lipoprotein lipase activity in adipose tissue and muscle is modulated by changes in the pattern of food intake. We have measured total lipoprotein lipase activity in adipose tissue and muscle of male Wistar rats (N = 6-10), weighing 200-250 g (~12 weeks), during the refeeding/fasting state following 24 h of fasting. Lipoprotein lipase activity in tissue homogenates was evaluated using a [³H]-triolein-containing substrate, and released [³H]-free fatty acids were extracted and quantified by liquid scintillation. Adipose tissue lipoprotein lipase activity did not completely recover within 2 h of refeeding (60% of refed ad libitum values). Cardiac lipoprotein lipase activity remained increased even 2 h after refeeding (100% of refed ad libitum values), whereas no significant changes were observed in the soleus and diaphragm muscles. Adipose tissue lipoprotein lipase activities were consistently higher than the highest skeletal muscle or heart values. It is therefore likely that adipose tissue, rather than muscle makes the major contribution to triacylglycerol clearance. There was concomitant relatively high lipoprotein lipase activity in both adipose tissue and cardiac muscle during the first few hours of refeeding, therefore cardiac muscle may contribute significantly to triacylglycerol clearance during this period. The results suggest that during fasting, increased lipoprotein lipase activity provides a complementary source of free fatty acids from circulating triacylglycerol, allowing the heart to maintain its continuous, high-energy expenditure.
Resumo:
Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.