976 resultados para Linked Open Data Android iOS Semantic Web Turismo Tourism
Resumo:
The COntext INterchange (COIN) strategy is an approach to solving the problem of interoperability of semantically heterogeneous data sources through context mediation. COIN has used its own notation and syntax for representing ontologies. More recently, the OWL Web Ontology Language is becoming established as the W3C recommended ontology language. We propose the use of the COIN strategy to solve context disparity and ontology interoperability problems in the emerging Semantic Web – both at the ontology level and at the data level. In conjunction with this, we propose a version of the COIN ontology model that uses OWL and the emerging rules interchange language, RuleML.
Resumo:
Presentation given as part of the EPrints/dotAC training day on 26 Mar 2010.
Resumo:
WAIS Seminar, presented 29 Mar 2012
Resumo:
This is a research discussion about the Hampshire Hub - see http://protohub.net/. The aim is to find out more about the project, and discuss future collaboration and sharing of ideas. Mark Braggins (Hampshire Hub Partnership) will introduce the Hampshire Hub programme, setting out its main objectives, work done to-date, next steps including the Hampshire data store (which will use the PublishMyData linked data platform), and opportunities for University of Southampton to engage with the programme , including the forthcoming Hampshire Hackathons Bill Roberts (Swirrl) will give an overview of the PublishMyData platform, and how it will help deliver the objectives of the Hampshire Hub. He will detail some of the new functionality being added to the platform Steve Peters (DCLG Open Data Communities) will focus on developing a web of data that blends and combines local and national data sources around localities, and common topics/themes. This will include observations on the potential employing emerging new, big data sources to help deliver more effective, better targeted public services. Steve will illustrate this with practical examples of DCLG’s work to publish its own data in a SPARQL end-point, so that it can be used over the web alongside related 3rd party sources. He will share examples of some of the practical challenges, particularly around querying and re-using geographic LinkedData in a federated world of SPARQL end-point.
Resumo:
This talk will present an overview of the ongoing ERCIM project SMARTDOCS (SeMAntically-cReaTed DOCuments) which aims at automatically generating webpages from RDF data. It will particularly focus on the current issues and the investigated solutions in the different modules of the project, which are related to document planning, natural language generation and multimedia perspectives. The second part of the talk will be dedicated to the KODA annotation system, which is a knowledge-base-agnostic annotator designed to provide the RDF annotations required in the document generation process.
Resumo:
RDFa JSON-LD Microdata
Resumo:
The strategic management of information plays a fundamental role in the organizational management process since the decision-making process depend on the need for survival in a highly competitive market. Companies are constantly concerned about information transparency and good practices of corporate governance (CG) which, in turn, directs relations between the controlling power of the company and investors. In this context, this article presents the relationship between the disclosing of information of joint-stock companies by means of using XBRL, the open data model adopted by the Brazilian government, a model that boosted the publication of Information Access Law (Lei de Acesso à Informação), nº 12,527 of 18 November 2011. Information access should be permeated by a mediation policy in order to subsidize the knowledge construction and decision-making of investors. The XBRL is the main model for the publishing of financial information. The use of XBRL by means of new semantic standard created for Linked Data, strengthens the information dissemination, as well as creates analysis mechanisms and cross-referencing of data with different open databases available on the Internet, providing added value to the data/information accessed by civil society.
Resumo:
Il progetto QRPlaces - Semantic Events, oggetto di questo lavoro, focalizza l’attenzione sull’analisi, la progettazione e l’implementazione di un sistema che sia in grado di modellare i dati, relativi a diversi eventi facenti parte del patrimonio turistico - culturale della Regione Emilia Romagna 1, rendendo evidenti i vantaggi associati ad una rappresentazione formale incentrata sulla Semantica. I dati turistico - culturali sono intesi in questo ambito sia come una rappresentazione di “qualcosa che accade in un certo punto ad un certo momento” (come ad esempio un concerto, una sagra, una raccolta fondi, una rappresentazione teatrale e quant’altro) sia come tradizioni e costumi che costituiscono il patrimonio turistico-culturale e a cui si fa spesso riferimento con il nome di “Cultural Heritage”. Essi hanno la caratteristica intrinseca di richiedere una conoscenza completa di diverse informa- zioni correlata, come informazioni di geo localizzazione relative al luogo fisico che ospita l’evento, dati biografici riferiti all’autore o al soggetto che è presente nell’evento piuttosto che riferirsi ad informazioni che descrivono nel dettaglio tutti gli oggetti, come teatri, cinema, compagnie teatrali che caratterizzano l’evento stesso. Una corretta rappresentazione della conoscenza ad essi legata richiede, pertanto, una modellazione in cui i dati possano essere interconnessi, rivelando un valore informativo che altrimenti resterebbe nascosto. Il lavoro svolto ha avuto lo scopo di realizzare un dataset rispondente alle caratteristiche tipiche del Semantic Web grazie al quale è stato possibile potenziare il circuito di comunicazione e informazione turistica QRPlaces 2. Nello specifico, attraverso la conversione ontologica di dati di vario genere relativi ad eventi dislocati nel territorio, e sfruttando i principi e le tecnologie del Linked Data, si è cercato di ottenere un modello informativo quanto più possibile correlato e arricchito da dati esterni. L’obiettivo finale è stato quello di ottenere una sorgente informativa di dati interconnessi non solo tra loro ma anche con quelli presenti in sorgenti esterne, dando vita ad un percorso di collegamenti in grado di evidenziare una ricchezza informativa utilizzabile per la creazione di valore aggiunto che altrimenti non sarebbe possibile ottenere. Questo aspetto è stato realizzato attraverso un’in- terfaccia di MashUp che utilizza come sorgente il dataset creato e tutti i collegamenti con la rete del Linked Data, in grado di reperire informazioni aggiuntive multi dominio.
Resumo:
La descrizione di un'applicazione sviluppata per la visualizzazione di shapefile in google map e openstreetmap
Machine Learning applicato al Web Semantico: Statistical Relational Learning vs Tensor Factorization
Resumo:
Obiettivo della tesi è analizzare e testare i principali approcci di Machine Learning applicabili in contesti semantici, partendo da algoritmi di Statistical Relational Learning, quali Relational Probability Trees, Relational Bayesian Classifiers e Relational Dependency Networks, per poi passare ad approcci basati su fattorizzazione tensori, in particolare CANDECOMP/PARAFAC, Tucker e RESCAL.
Resumo:
BACKGROUND The population-based effectiveness of thoracic endovascular aortic repair (TEVAR) versus open surgery for descending thoracic aortic aneurysm remains in doubt. METHODS Patients aged over 50 years, without a history of aortic dissection, undergoing repair of a thoracic aortic aneurysm between 2006 and 2011 were assessed using mortality-linked individual patient data from Hospital Episode Statistics (England). The principal outcomes were 30-day operative mortality, long-term survival (5 years) and aortic-related reinterventions. TEVAR and open repair were compared using crude and multivariable models that adjusted for age and sex. RESULTS Overall, 759 patients underwent thoracic aortic aneurysm repair, mainly for intact aneurysms (618, 81·4 per cent). Median ages of TEVAR and open cohorts were 73 and 71 years respectively (P < 0·001), with more men undergoing TEVAR (P = 0·004). For intact aneurysms, the operative mortality rate was similar for TEVAR and open repair (6·5 versus 7·6 per cent; odds ratio 0·79, 95 per cent confidence interval (c.i.) 0·41 to 1·49), but the 5-year survival rate was significantly worse after TEVAR (54·2 versus 65·6 per cent; adjusted hazard ratio 1·45, 95 per cent c.i. 1·08 to 1·94). After 5 years, aortic-related mortality was similar in the two groups, but cardiopulmonary mortality was higher after TEVAR. TEVAR was associated with more aortic-related reinterventions (23·1 versus 14·3 per cent; adjusted HR 1·70, 95 per cent c.i. 1·11 to 2·60). There were 141 procedures for ruptured thoracic aneurysm (97 TEVAR, 44 open), with TEVAR showing no significant advantage in terms of operative mortality. CONCLUSION In England, operative mortality for degenerative descending thoracic aneurysm was similar after either TEVAR or open repair. Patients who had TEVAR appeared to have a higher reintervention rate and worse long-term survival, possibly owing to cardiopulmonary morbidity and other selection bias.
Resumo:
We present the data structures and algorithms used in the approach for building domain ontologies from folksonomies and linked data. In this approach we extracts domain terms from folksonomies and enrich them with semantic information from the Linked Open Data cloud. As a result, we obtain a domain ontology that combines the emergent knowledge of social tagging systems with formal knowledge from Ontologies.