947 resultados para Linear system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling nonlinear systems using Volterra series is a century old method but practical realizations were hampered by inadequate hardware to handle the increased computational complexity stemming from its use. But interest is renewed recently, in designing and implementing filters which can model much of the polynomial nonlinearities inherent in practical systems. The key advantage in resorting to Volterra power series for this purpose is that nonlinear filters so designed can be made to work in parallel with the existing LTI systems, yielding improved performance. This paper describes the inclusion of a quadratic predictor (with nonlinearity order 2) with a linear predictor in an analog source coding system. Analog coding schemes generally ignore the source generation mechanisms but focuses on high fidelity reconstruction at the receiver. The widely used method of differential pnlse code modulation (DPCM) for speech transmission uses a linear predictor to estimate the next possible value of the input speech signal. But this linear system do not account for the inherent nonlinearities in speech signals arising out of multiple reflections in the vocal tract. So a quadratic predictor is designed and implemented in parallel with the linear predictor to yield improved mean square error performance. The augmented speech coder is tested on speech signals transmitted over an additive white gaussian noise (AWGN) channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Dissertation wurden kreuzkonjugierte organische Verbindungen basierend auf Diazafluorenmethyliden- sowie Dipyridylmethyliden-Bausteinen synthetisiert, die zum einen photoredoxaktive Metallfragmente komplexieren können und zum anderen erweiterte π-konjugierte Pfade auf der Grundlage von Alkineinheiten ermöglichen. Das kreuzkonjugierte Motiv wurde über die Kupplung von Alkineinheiten an halogenierte Methyliden-Einheiten, den so genannten Dibromolefinen, zugänglich gemacht. Zur Synthese von Dibromolefinen wurden verschiedene Methoden untersucht. Literaturbekannte Methoden wie die Wittig-Reaktion und ihre Modifikationen sowie die Corey-Fuchs-Reaktion konnten für die Diazafluoreneinheit nicht erfolgreich angewendet werden. Bei einer mikrowellenunterstützten Reaktion konnte sowohl ausgehend von Diazafluoren-9-on als auch von Di-2-pyridylketon eine Dibromolefinierung (55 % und 65 %) erreicht werden. Die Eignung der Mikrowellenstrahlung für Dibromolefinierungsreaktionen nach Corey und Fuchs wurde weiterhin an verschiedenen Aldehyden und Ketonen untersucht. In den meisten Fällen konnten gute bis sehr gute Ergebnisse erzielt werden. Durch die erfolgreiche Synthese von Dibromolefinen über Mikrowellensynthese wurde die Realisierung von diversen π-konjugierten Systemen möglich. Dies erfolgte exemplarisch durch die Kupplung der Alkine 5-Ethinyl-2,2’-bipyridin, 1-(Ferrocenylethinyl)-4-(ethinyl)benzol, Tri(tolyl)propin sowie der TIPS- und TMS-Acetylene. Neben der Vielfalt an Möglichkeiten zur Funktionalisierung von Dipyridyl- und Diazafluorenbausteinen zeigte sich zudem, dass sogar räumlich anspruchsvolle Verbindungen wie die geminale angeordneten voluminösen Tri(tolyl)propinyl-Substituenten an der Doppelbindung erfolgreich synthetisiert werden können. Die Koordinationseigenschaften der neu synthetisierten Verbindungen konnten durch Umsetzungen der Diazafluoren- und Dipyridylverbindungen mit PdCl2 und [RuCl2(bpy)2] erfolgreich gezeigt werden. Im Hinblick auf die Herstellung von Funktionsmaterialien eignen sich die Endiin-Strukturmotive aufgrund von diversen Variationsmöglichkeiten wie Koordination von Übergangsmetallen sowie Funktionalisierung der Peripherie gut. Dadurch können die elektronischen Eigenschaften wie die Absorption oder elektrochemische Potentiale der Verbindungen modifiziert werden. Die UV/Vis-Spektren der neu synthetisierten Verbindungen zeigen, dass Absorptionen in längerwelligen Bereichen durch Verlängerung des Konjugationspfades gesteuert werden können. Zudem lassen sich weitere photophysikalische Eigenschaften wie MC-, LC-, LMCT- oder MLCT-Übergänge durch Koordination von Metallen generieren. Die elektrochemischen Potentiale der Dipyridyl- und Diazafluorenbausteine konnten durch Anbindung von verschiedenen Substituenten beeinflusst werden. Es zeigte sich, dass sich die Reduktionswellen im Vergleich zu denen der Ketone zu niedrigeren Potentialen verschieben, wenn Alkine an die Dipyridylmethyliden- und Diazafluorenmethyliden-Bausteine geknüpft wurden. Zudem konnte beobachtet werden, dass die Signale nicht immer reversibel sind. Insbesondere die Dipyridylverbindungen zeichneten sich durch irreversible Reduktionswellen aus. Die Realisierung von π-konjugierten Systemen gelang auch mit cyclischen kohlenstoffbasierten Verbindungen. Über das separat synthetisierte 2,2’-Diethinyltolan konnte eine cyclische Verbindung, ein dehydroannulen-radialenisches System, erfolgreich hergestellt werden. Die Koordination von redoxaktiven Metallzentren wie [Ru(bpy)2] konnte für diese Verbindung ebenfalls erfolgreich gezeigt werden. Die elektronische Wechselwirkung zwischen dem Metallzentrum und dem dehydroannulenischen System könnte sowohl über theoretische Methoden (zeitabhängige Dichtefunktionaltheorie) als auch experimentell wie z. B. über transiente Absorptionsspektroskopie untersucht werden. Diese zukünftig durchzuführenden Untersuchungen können Aufschluss über die Ladungstransferraten und -dauer geben. Im Hinblick auf die Realisierung von Modellverbindungen für molekulare Drähte wurden lineare Systeme basierend auf der Diazafluoreneinheit synthetisiert. Zur Synthese von derartigen Systemen war es zunächst notwendig, die Dibromolefine unsymmetrisch zu alkinylieren. Die unsymmetrische Substitution gestaltete sich als Herausforderung, da eine Einfachkupplung mit einem Acetylen nicht möglich war. In den meisten Fällen wurden zweifach substituierte Spezies mit den identischen Alkinen erhalten. Die besten Ausbeuten konnten durch die konsekutive Zugabe von TIPS-Acetylen und darauffolgend TMS-Acetylen in die Reaktionsmischung erhalten werden. Offenbar spielt der räumliche Anspruch des Erstsubstituenten in diesem Zusammenhang eine Rolle. Die selektive Entschützung der unterschiedlich silylierten Verbindungen erfolgte mit K2CO3 in MeOH/THF (1:1). Die oxidative Homokupplungsreaktion erfolgte ohne Isolierung der entschützten Spezies, da diese instabil ist und zur Polymerisation neigt. Aufgrund der Instabilität der entschützten Spezies sowie möglichen Nebenreaktionen waren die Ausbeuten sowohl bei der TIPS-geschützten Verbindung als auch bei der TTP-geschützten Verbindung gering. Versuche, lineare Systeme von dipyridylbasierten Verbindungen zu erhalten, schlugen fehl. Die π-konjugierten Systeme lassen aufgrund der effektiven Überlappung der beteiligten π-Orbitale hohe Ladungsträgermobilitäten vermuten. Die im Rahmen dieser Arbeit synthetisierten Verbindungen könnten mit Schwefelverbindungen die Anbindung an Elektroden zulassen, worüber die Leitfähigkeiten der Verbindungen gemessen werden könnten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We model the large scale fading of wireless THz communications links deployed in a metropolitan area taking into account reception through direct line of sight, ground or wall reflection and diffraction. The movement of the receiver in the three dimensions is modelled by an autonomous dynamic linear system in state-space whereas the geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a Wiener model from time-domain measurements of the field intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The large scale fading of wireless mobile communications links is modelled assuming the mobile receiver motion is described by a dynamic linear system in state-space. The geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A Wiener system subspace identification algorithm in conjunction with polynomial regression is used to identify a model from time-domain estimates of the field intensity assuming a multitude of emitters and an antenna array at the receiver end.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We test the expectations theory of the term structure of U.S. interest rates in nonlinear systems. These models allow the response of the change in short rates to past values of the spread to depend upon the level of the spread. The nonlinear system is tested against a linear system, and the results of testing the expectations theory in both models are contrasted. We find that the results of tests of the implications of the expectations theory depend on the size and sign of the spread. The long maturity spread predicts future changes of the short rate only when it is high.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given a model 2-complex K(P) of a group presentation P, we associate to it an integer matrix Delta(P) and we prove that a cellular map f : K(P) -> S(2) is root free (is not strongly surjective) if and only if the diophantine linear system Delta(P) Y = (deg) over right arrow (f) has an integer solution, here (deg) over right arrow (f) is the so-called vector-degree of f

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generating quadrilateral meshes is a highly non-trivial task, as design decisions are frequently driven by specific application demands. Automatic techniques can optimize objective quality metrics, such as mesh regularity, orthogonality, alignment and adaptivity; however, they cannot make subjective design decisions. There are a few quad meshing approaches that offer some mechanisms to include the user in the mesh generation process; however, these techniques either require a large amount of user interaction or do not provide necessary or easy to use inputs. Here, we propose a template-based approach for generating quad-only meshes from triangle surfaces. Our approach offers a flexible mechanism to allow external input, through the definition of alignment features that are respected during the mesh generation process. While allowing user inputs to support subjective design decisions, our approach also takes into account objective quality metrics to produce semi-regular, quad-only meshes that align well to desired surface features. Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider incompressible Stokes flow with an internal interface at which the pressure is discontinuous, as happens for example in problems involving surface tension. We assume that the mesh does not follow the interface, which makes classical interpolation spaces to yield suboptimal convergence rates (typically, the interpolation error in the L(2)(Omega)-norm is of order h(1/2)). We propose a modification of the P(1)-conforming space that accommodates discontinuities at the interface without introducing additional degrees of freedom or modifying the sparsity pattern of the linear system. The unknowns are the pressure values at the vertices of the mesh and the basis functions are computed locally at each element, so that the implementation of the proposed space into existing codes is straightforward. With this modification, numerical tests show that the interpolation order improves to O(h(3/2)). The new pressure space is implemented for the stable P(1)(+)/P(1) mini-element discretization, and for the stabilized equal-order P(1)/P(1) discretization. Assessment is carried out for Poiseuille flow with a forcing surface and for a static bubble. In all cases the proposed pressure space leads to improved convergence orders and to more accurate results than the standard P(1) space. In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-Taylor instability and merging bubbles) are reported to show that the proposed space is robust enough to carry out realistic simulations. (c) 2009 Elsevier B.V. All rights reserved.