983 resultados para Linear Approximation Operators


Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AMS classification: 41A36, 41A10, 41A25, 41Al7.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We completely determine the spectra of composition operators induced by linear fractional self-maps of the unit disc acting on weighted Dirichlet spaces; extending earlier results by Higdon [8] and answering the open questions in this context.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form ""sum of squares"", satisfying Hormander's bracket condition. Let q be a characteristic point; for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji Show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves' conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new simple method to design linear-phase finite impulse response (FIR) digital filters, based on the steepest-descent optimization method, is presented in this paper. Starting from the specifications of the desired frequency response and a maximum approximation error a nearly optimum digital filter is obtained. Tests have shown that this method is alternative to other traditional ones such as Frequency Sampling and Parks-McClellan, mainly when other than brick wall frequency response is required as a desired frequency response. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely used to describe experimental data for real dispersive media. The integral equation for the interpolating field in terms of the in field is solved and the solution used to find the out field. The relation between the ill and out creation and annihilation operators is found that allows one to calculate the S matrix for this system. In this model, we find that there are absorption bands, but the input-output relations are completely unitary. No additional quantum-noise terms are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Admission controls, such as trunk reservation, are often used in loss networks to optimise their performance. Since the numerical evaluation of performance measures is complex, much attention has been given to finding approximation methods. The Erlang Fixed-Point (EFP) approximation, which is based on an independent blocking assumption, has been used for networks both with and without controls. Several more elaborate approximation methods which account for dependencies in blocking behaviour have been developed for the uncontrolled setting. This paper is an exploratory investigation of extensions and synthesis of these methods to systems with controls, in particular, trunk reservation. In order to isolate the dependency factor, we restrict our attention to a highly linear network. We will compare the performance of the resulting approximations against the benchmark of the EFP approximation extended to the trunk reservation setting. By doing this, we seek to gain insight into the critical factors in constructing an effective approximation. (C) 2003 Elsevier Ltd. All rights reserved.