875 resultados para Life-history Evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACTMale, female, pupa, and last-instar larva of Palaeomystella beckeri (Moreira and Basilio) a new species from the Atlantic forest, southern Brazil, are described and illustrated with the aid of optical and scanning electron microscopy. Larvae induce galls on apical branches of Tibouchina trichopoda (DC.) Baill. (Melastomataceae) within which pupation occurs. Gall description and preliminary data on life history are also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Elachista synethes was recently recognized as an alien species in northern Chile, where its larvae mine the rescue grass Bromus catharticus (Poaceae). In order to provide the necessary information to allow field detection of E. synethes during early ontogeny, we conducted a morphological reappraisal of the immature stages of this leaf-miner moth, based on light and scanning electron microscopy, including the first descriptions of the egg and the first-instar larva. This is the first report of the existence of an apodal early larva for a species of Elachista Treitschke. The legs and prolegs are absent in the first two instars, but are well developed in the last two. Additional observations on the life history are also provided, including a description of the mine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variation in coloration with a strong underlying genetic basis is frequently found within animal populations but little is known about its function. Covariation between colour polymorphism and life-history traits can arise because morphs perform differently among environments or because they possess alternative alleles coding for key life-history traits. To test these two hypotheses, we studied a population of tawny owls Strix aluco, a bird displaying red, brown and grey morphs. We assessed the colour morph of breeding females, swapped eggs or hatchlings between pairs of nests, and examined how body condition in 3-week-old nestlings covaries with coloration of foster and genetic mothers. Redder foster and genetic mothers produced young in better condition. Because in two other years we observed that greyish females produced offspring in better condition than those of red females, the present study suggests that colour polymorphism signals genetic and phenotypic adaptations to cope with a fluctuating environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post-reproductive lifespan. Moreover, most studies have examined long-established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non-laboratory-adapted wild populations of D. melanogaster. Populations varied in a number of life-history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age-specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post-ovipository period. Individual females exhibited clear-cut fecundity peaks, which contrasts with previous analyses, and post-peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post-reproductive lifespan, which on average made up 40% of total lifespan. Post-reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random 'add-on' at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life-history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All ontogenetic stages of a life cycle are exposed to environmental conditions so that population persistence depends on the performance of both adults and offspring. Most studies analysing the influence of abiotic conditions on species performance have focussed on adults, while studies covering early life-history stages remain rare. We investigated the responses of early stages of two widely introduced ascidians, Styela plicata and Microcosmus squamiger, to different abiotic conditions. Stressors mimicked conditions in the habitats where both species can be found in their distributional ranges and responses were related to the selection potential of their populations by analysing their genetic diversity. Four developmental stages (egg fertilisation, larval development, settlement, metamorphosis) were studied after exposure to high temperature (30°C), low salinities (26 and 22 ) and high copper concentrations (25, 50 and 100 µg/L). Although most stressors effectively led to failure of complete development (fertilisation through metamorphosis), fertilisation and larval development were the most sensitive stages. All the studied stressors affected the development of both species, though responses differed with stage and stressor. S. plicata was overall more resistant to copper, and some stages of M. squamiger to low salinities. No relationship was found between parental genetic composition and responses to stressors. We conclude that successful development can be prevented at several life-history stages, and therefore, it is essential to consider multiple stages when assessing species' abilities to tolerate stress. Moreover, we found that early development of these species cannot be completed under conditions prevailing where adults live. These populations must therefore recruit from elsewhere or reproduce during temporal windows of more benign conditions. Alternatively, novel strategies or behaviours that increase overall reproductive success might be responsible for ensuring population survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species' traits and species' coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mating behavior and reproductive strategies of Alpine whitefish like Coregonus zugensis (Nusslin) are poorly understood, probably because they spawn in deep water where direct observations are difficult. In this study, we interpret life-history and sperm quality traits of fish that we caught from their spawning place. We found that males invest heavily into gonadal tissue (up to 5.6% of their body weight), which is, in comparison to other fish, consistent with external fertilization, distinct pairing and moderate to high communal spawning, or no pairing and low to moderate communal spawning. Sperm competition theory and recent experimental studies on other salmonids predict that males optimize ejaculate characteristics in relation to the costs of sperm and the level of competition they have to expect: dominant males are predicted to invest less into ejaculate quality and to have slower spermatozoa than subdominant males. We found that spermatozoa of older males are slower than those of younger males. Moreover, older males have larger breeding tubercles, a secondary sexual trait that has, in some previous studies, been found to be linked to good condition and to good genetic quality. Our results suggest that C. zugensis has age-linked reproductive strategies, that multimale spawning is common, i.e., that sperm competition plays a significant role, and that older males are on average dominant over younger males at the spawning place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plant species' genetic population structure is the result of a complex combination of its life history, ecological preferences, position in the ecosystem and historical factors. As a result, many different statistical methods exist that measure different aspects of species' genetic structure. However, little is known about how these methods are interrelated and how they are related to a species' ecology and life history. In this study, we used the IntraBioDiv amplified fragment length polymorphisms data set from 27 high-alpine species to calculate eight genetic summary statistics that we jointly correlate to a set of six ecological and life-history traits. We found that there is a large amount of redundancy among the calculated summary statistics and that there is a significant association with the matrix of species traits. In a multivariate analysis, two main aspects of population structure were visible among the 27 species. The first aspect is related to the species' dispersal capacities and the second is most likely related to the species' postglacial recolonization of the Alps. Furthermore, we found that some summary statistics, most importantly Mantel's r and Jost's D, show different behaviour than expected based on theory. We therefore advise caution in drawing too strong conclusions from these statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative analyses of survival senescence by using life tables have identified generalizations including the observation that mammals senesce faster than similar-sized birds. These generalizations have been challenged because of limitations of life-table approaches and the growing appreciation that senescence is more than an increasing probability of death. Without using life tables, we examine senescence rates in annual individual fitness using 20 individual-based data sets of terrestrial vertebrates with contrasting life histories and body size. We find that senescence is widespread in the wild and equally likely to occur in survival and reproduction. Additionally, mammals senesce faster than birds because they have a faster life history for a given body size. By allowing us to disentangle the effects of two major fitness components our methods allow an assessment of the robustness of the prevalent life-table approach. Focusing on one aspect of life history - survival or recruitment - can provide reliable information on overall senescence.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The maintenance of genetic variation is a long-standing issue because the adaptive value of life-history strategies associated with each genetic variant is usually unknown. However, evidence for the coexistence of alternative evolutionary fixed strategies at the population level remains scarce. Because in the tawny owl (Strix aluco) heritable melanin-based coloration shows different physiological and behavioral norms of reaction, we investigated whether coloration is associated with investment in maintenance and reproduction. Light melanic owls had lower adult survival compared to dark melanic conspecifics, and color variation was related to the trade-off between offspring number and quality. When we experimentally enlarged brood size, light melanic males produced more fledglings but in poorer condition, and they were less often recruited in the local breeding population than those of darker melanic conspecifics. Our results also suggest that dark melanic males allocate a constant effort to raise their brood independently of environmental conditions, whereas lighter melanic males finely adjust reproductive effort in relation to changes in environmental conditions. Color traits can therefore be associated with life-history strategies, and stochastic environmental perturbation can temporarily favor one phenotype over others. The existence of fixed strategies implies that some phenotypes can sometimes display a "maladapted" strategy. Long-term population monitoring is therefore vital for a full understanding of how different genotypes deal with trade-offs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clines in life history traits, presumably driven by spatially varying selection, are widespread. Major latitudinal clines have been observed, for example, in Drosophila melanogaster, an ancestrally tropical insect from Africa that has colonized temperate habitats on multiple continents. Yet, how geographic factors other than latitude, such as altitude or longitude, affect life history in this species remains poorly understood. Moreover, most previous work has been performed on derived European, American and Australian populations, but whether life history also varies predictably with geography in the ancestral Afro-tropical range has not been investigated systematically. Here, we have examined life history variation among populations of D. melanogaster from sub-Saharan Africa. Viability and reproductive diapause did not vary with geography, but body size increased with altitude, latitude and longitude. Early fecundity covaried positively with altitude and latitude, whereas lifespan showed the opposite trend. Examination of genetic variance-covariance matrices revealed geographic differentiation also in trade-off structure, and QST -FST analysis showed that life history differentiation among populations is likely shaped by selection. Together, our results suggest that geographic and/or climatic factors drive adaptive phenotypic differentiation among ancestral African populations and confirm the widely held notion that latitude and altitude represent parallel gradients.