917 resultados para Libraries and electronic publishing
Resumo:
A series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(C CAr)(L-2)Cp'] (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)(2), Cp' = Cp; L-2 = dppe; Cp' = Cp*) have been examined using electrochemical and spectroelectrochemical methods. One-electron oxidation of these complexes gave the corresponding radical cations [Ru(C CAr)(L2)Cp'](+). Those cations based on Ru(dppe)Cp*, or which feature a para-tolyl acetylide substituent, are more chemically robust than examples featuring the Ru(PPh3)(2)Cp moiety, permitting good quality UV-Vis-NIR and IR spectroscopic data to be obtained using spectroelectrochemical methods. On the basis of TD DFT calculations, the low energy (NIR) absorption bands in the experimental electronic spectra for most of these radical cations are assigned to transitions between the beta-HOSO and beta-LUSO, both of which have appreciable metal d and ethynyl pi character. However, the large contribution from the anthryl moiety to the frontier orbitals of [Ru(C CC14H9)(L2)CP'](+) suggests compounds containing this moiety should be described as metal-stabilised anthryl radical cations.
Resumo:
One-electron oxidation of 3,6-diphenyl-1,2-dithiin yields the corresponding radical cation. The product is stable at low temperatures and can be distinguished by a triplet EPR signal. Cyclic voltammetric, UV-vis spectroelectrochemical, and DFT studies were performed to elucidate its molecular structure and electronic properties. Time-dependent DFT calculations reproduce appreciably well the UV-vis spectral changes observed during the oxidation. The results reveal a moderately twisted structure of the 1,2-dithiin heterocycle in the radical cation.
Resumo:
A new family of vanadium-substituted chromium sulfides (VxCr2-xS3, 0 < x < 2) has been prepared and characterized by powder X-ray and neutron diffraction, SQUID magnetometry, electrical resistivity, and Seebeck coefficient measurements. Vanadium substitution leads to a single-phase region with a rhombohedral Cr2S3 structure over the composition range 0.0 < x e 0.75, while at higher vanadium contents (1.6 e x < 2.0) a second single-phase region, in which materials adopt a cation-deficient Cr3S4 structure, is observed. Materials with the Cr2S3 structure all exhibit semiconducting behavior. However, both transport and magnetic properties indicate an increasing degree of electron delocalization with increasing vanadium content in this compositional region. Materials that adopt a Cr3S4-type structure exhibit metallic behavior. Magnetic susceptibility data reveal that all materials undergo a magnetic ordering transition at temperatures in the range 90–118 K. Low-temperature magnetization data suggest that this involves a transition to a ferrimagnetic state.
Resumo:
The dissymmetrical naphthalene-bridged complexes [Cp′Fe(μ-C10H8)FeCp*] (3; Cp* = η5-C5Me5, Cp′ = η5-C5H2-1,2,4-tBu3) and [Cp′Fe(μ-C10H8)RuCp*] (4) were synthesized via a one-pot procedure from FeCl2(thf)1.5, Cp′K, KC10H8, and [Cp* FeCl(tmeda)] (tmeda = N,N,N′,N′- tetramethylethylenediamine) or [Cp*RuCl]4, respectively. The symmetrically substituted iron ruthenium complex [Cp*Fe(μ-C10H8)RuCp*] (5) bearing two Cp* ligands was prepared as a reference compound. Compounds 3−5 are diamagnetic and display similar molecular structures, where the metal atoms are coordinated to opposite sides of the bridging naphthalene molecule. Cyclic voltammetry and UV/vis spectroelectrochemistry studies revealed that neutral 3−5 can be oxidized to monocations 3+−5+ and dications 32+−52+. The chemical oxidation of 3 and 4 with [Cp2Fe]PF6 afforded the paramagnetic hexafluorophosphate salts [Cp′Fe(μ-C10H8)FeCp*]PF6 ([3]PF6) and [Cp′Fe(μ-C10H8)RuCp*]PF6 ([4]PF6), which were characterized by various spectroscopic techniques, including EPR and 57Fe Mössbauer spectroscopy. The molecular structure of [4]PF6 was determined by X-ray crystallography. DFT calculations support the structural and spectroscopic data and determine the compositions of frontier molecular orbitals in the investigated complexes. The effects of substituting Cp* with Cp′ and Fe with Ru on the electronic structures and the structural and spectroscopic properties are analyzed.
Resumo:
The readily available complex 1,1-dibromo-2-ferrocenylethylene provides a convenient entry point for the preparation of a wide range of cross-conjugated 1,1-bis(alkynyl)-2-ferrocenylethenes through simple Pd(0)/Cu(I)-mediated cross-coupling reactions with 1-alkynes. The ferrocene moiety in compounds of the general form FcCHC(CCR)2 is essentially electronically isolated from the cross-conjugated π system, as evidenced by IR and UV−vis spectroelectrochemical experiments and quantum chemical calculations. In contrast to the other examples which give stable ferrocenium derivatives upon electrochemical oxidation, the aniline derivatives [FcCHC(CCC6H4NH2-4)2]+ and [FcCHC(CCC6H4NMe2-4)2]+ proved to be unstable on the time scale of the spectroelectrochemical experiments, leading to passivation of the electrode surface over time. There is no significant thermodynamic stabilization of the radical anion [FcCHC(CCC6H4NO2-4)2]− relative to the neutral and dianionic analogues, although the dianion [FcCHC(CCC6H4NO2- 4)2]2− could be studied as a relatively chemically stable species and is well described in terms of two linked nitrophenyl radicals. The capacity to introduce a relatively isolated point charge at the periphery of the cross-conjugated π system appears to make these complexes useful templates for the construction of electrochemically gated quantum interference transistors.
Resumo:
FeM2X4 spinels, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M = Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+U). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr2X4 and FeMn2S4 are fully normal, FeNi2X4 and FeCo2S4 are intermediate, and FeCo2O4 and FeMn2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr2X4, FeMn2X4, FeCo2O4 and FeNi2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeMn2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn2S4. Our calculations suggest that the spin filtering properties of the FeM2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
Resumo:
In 1957, John Sperry Jr. published an article in Libri entitled “Egyptian libraries: a survey of the evidence.” Some 55 years on, this article revisits the subject, taking into account research undertaken in the field of Egyptology over the last half a century. Based on an extended essay written for the online Certificate in Egyptology course at the University of Manchester, this article considers the evidence for the existence of “institutional” (that is, created for the use and functioning of the state) libraries and archives in Ancient Egypt throughout the dynastic period (c.3500−30 B.C.); their history, purpose and, to some extent, their administration. It also considers an aspect not explored in Sperry’s article, that of “private” libraries in Ancient Egypt (texts collected by an individual for their own personal use). Whilst estimated literacy levels within the general population precluded the widespread collection of texts for personal edification, there is evidence to suggest that private libraries were present in Ancient Egypt. The article concludes with a brief assessment of the legacy of these ancient libraries and their influence on the creation of the Library of Alexandria, in both its ancient and modern manifestations.
Resumo:
This paper is concerned with the ways in which libraries – in this case public libraries in Rome and the Roman world – acted as points of connectivity and communication.
Resumo:
The analysis of the IR carbonyl band of the alpha-methylsulfonyl-alpha-diethoxyphosphoryl p-substituted acetophenones p-Y-Ph-C(O)CH(SO(2)Me)[P(O)(OEt)(2)] (Y = OMe 1, H 2, F 3, Cl 4, Br 5 and NO(2) 6) supported by HF/6-31G(d,p) ab initio calculations of the alpha-methylsulfonyl-alpha-diethoxyphosphoryl acetophenone 2, indicated the existence of a single stable cl conformer in gas phase and in solvents of increasing polarity, along with the presence of second less stable conformation in gas phase. The cl conformer present the (SO(2)Me) group and the [P(O)(OEt(2))] groups in a syn-clinal (gauche) geometry and is stabilised through of the 0(`60)... P(%), 01NO(owl Crco), ONO)... C(,C*.), 060)... S(`S`02.,) and 0(`S-02) q o) electronic interactions 08along with H(8S*o2M,). 0(660). HU(5C_H2)lP0Erl- 0(8so2m), H(6 +Ph)- - - (co) and H(8o+`-Ph). 0( `Po) intramolecular hydrogen bonds. The almost co nstant negative carbonyl frequency shifts (Av) for the title compounds 1-6 with respect to the parent acetophenones 7-14 corroborates the prevalence of the electronic interactions over the -l(y inductive effect of the ot-substituents for the title compounds and gives strong support for the existence of the crossed 0`(`C-O)... S`(1S+02m,) and 0(""S-02) C(`C+O) (charge transfer and electrostatic); 08-) (co P(`i o) and 01`M-OFt)l C(` o), (electrostatic) interactions. 0 2008 Elsevier B.V. All rights reserved.
Resumo:
Multiconfigurational SCF and second-order perturbation theory have been employed to study seven low-lying singlet and triplet electronic states of the Mo-2 molecule. The bond order of the ground state has been analyzed based on the effective bond order (EBO), indicating that a fully developed sextuple bond is formed between the two Mo atoms. The experimentally observed excited states a(3)Sigma(+)(u) and A(1)Sigma(+)(u) have been determined and the so-called (3)Lambda excited state identified as the b(3)Sigma(+)(u) state, in agreement with experimental expectations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The (1)H NMR spectra of N-methoxy-N-methyl-2-[(4`-substituted)phenylsulfinyl]-propanamides [Y-Ph-S(O)CH(Me)C(O)N(OMe)Me; Y = OMe 1, Me 2, H 3. Cl 4, NO(2) 5] along with the X-ray diffraction analysis of the nitro-derivative (5). have shown the existence of two pairs of diastereomers (racemic mixture) [C(R)S(S)/C(S)S(R) (diast(1)) and C(R)S(R)/C(S)S(S) (diast(2))] in the ratio of ca. 7:3. respectively. The v(CO) IR analysis of the title compounds supported by HF and B3LYP/6-31G** calculations of 3 and of the parent N-methoxy-N-methyl-propanamide (6) by HF, have shown that diast(1) exists in an equilibrium between the two more polar and more stable quasi-cis (q-c(1) and q-c(2)) conformers and the gauche(g) conformer. The population of the g conformer in the equilibrium increases with the increase in the solvent polarity, which is attributed to a larger solvation effect on the carbonyl and sulfinyl groups. Diast(2) of compound 3 occurs in the gas phase as an equilibrium between the most stable quasi-gauche (q-g) conformer and the quasi-cis (q-c) conformer, both presenting very similar dipole moments. The former is stabilized by electrostatic and charge transfer interactions, which results in a less solvated spatial arrangement. Moreover, all conformers of both diastereomers are stabilized by several intramolecular hydrogen bonds. X-ray single crystal analysis performed for diast(1) and for diast(2) of 5 indicates that both stereoisomers assume, in the solid state, the anti-clinal (gauche) conformation. For the crystal packing, diast(1) of 5 is made up of three molecules joined through two centro-symmetric H center dot center dot center dot O hydrogen bonds. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Quantum mechanical calculations at the B3LYP theory level, together with the 6-31G* basis set, were employed to obtain the energy, ionization potential, and polarizabilites for dipyridamole and derivatives, which are compared with their biological activity. Density functional calculations of the spin densities were performed for radical formed by electron abstraction of dipyridamole and derivatives. The unpaired electron remains in dipyridamole is localized on the nitrogen atoms in the substituent positions 1, 3, 5, 7, 11, 12, 13, 14, with participation of the 9 and 10 carbons in the pyrimido-pyrimidine ring. The antioxidant activity is related with ionization potential, polarizability and Log P.