922 resultados para Lexicographic product of graphs
Employment of the side product of biodiesel production in the formation of surfactant like molecules
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Consider an undirected graph G and a subgraph of G, H. A q-backbone k-colouring of (G,H) is a mapping f: V(G) {1, 2, ..., k} such that G is properly coloured and for each edge of H, the colours of its endpoints differ by at least q. The minimum number k for which there is a backbone k-colouring of (G,H) is the backbone chromatic number, BBCq(G,H). It has been proved that backbone k-colouring of (G,T) is at most 4 if G is a connected C4-free planar graph or non-bipartite C5-free planar graph or Cj-free, j∈{6,7,8} planar graph without adjacent triangles. In this thesis we improve the results mentioned above and prove that 2-backbone k-colouring of any connected planar graphs without adjacent triangles is at most 4 by using a discharging method. In the second part of this thesis we further improve these results by proving that for any graph G with χ(G) ≥ 4, BBC(G,T) = χ(G). In fact, we prove the stronger result that a backbone tree T in G exists, such that ∀ uv ∈ T, |f(u)-f(v)|=2 or |f(u)-f(v)| ≥ k-2, k = χ(G). For the case that G is a planar graph, according to Four Colour Theorem, χ(G) = 4; so, BBC(G,T) = 4.
Resumo:
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph, the Gallai graphs, the anti-Gallai graphs and its iterations to be clique irreducible and clique vertex irreducible are also obtained.
Resumo:
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D, and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.
Resumo:
In this note,the (t) properties of five class are studied. We proved that the classes of cographs and clique perfect graphs without isolated vertices satisfy the (2) property and the (3) property, but do not satisfy the (t) property for tis greater than equal to 4. The (t) properties of the planar graphs and the perfect graphss are also studied . we obtain a necessary and suffieient conditions for the trestled graph of index K to satisfy the (2) property
Resumo:
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D, and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.
Resumo:
Antimedian graphs are introduced as the graphs in which for every triple of vertices there exists a unique vertex x that maximizes the sum of the distances from x to the vertices of the triple. The Cartesian product of graphs is antimedian if and only if its factors are antimedian. It is proved that multiplying a non-antimedian vertex in an antimedian graph yields a larger antimedian graph. Thin even belts are introduced and proved to be antimedian. A characterization of antimedian trees is given that leads to a linear recognition algorithm.
Resumo:
A graphs G is clique irreducible if every clique in G of size at least two,has an edge which does not lie in any other clique of G and is clique reducible if it is not clique irreducible. A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G and clique vertex reducible if it is not clique vertex irreducible. The clique vertex irreducibility and clique irreducibility of graphs which are non-complete extended p-sums (NEPS) of two graphs are studied. We prove that if G(c) has at least two non-trivial components then G is clique vertex reducible and if it has at least three non-trivial components then G is clique reducible. The cographs and the distance hereditary graphs which are clique vertex irreducible and clique irreducible are also recursively characterized.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
A graph G is strongly distance-balanced if for every edge uv of G and every i 0 the number of vertices x with d.x; u/ D d.x; v/ 1 D i equals the number of vertices y with d.y; v/ D d.y; u/ 1 D i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance-balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distancebalanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance-balanced graphs and an algorithm of time complexity O.mn/ for their recognition, wheremis the number of edges and n the number of vertices of the graph in question, are given
Resumo:
The distance DG(v) of a vertex v in an undirected graph G is the sum of the distances between v and all other vertices of G. The set of vertices in G with maximum (minimum) distance is the antimedian (median) set of a graph G. It is proved that for arbitrary graphs G and J and a positive integer r 2, there exists a connected graph H such that G is the antimedian and J the median subgraphs of H, respectively, and that dH(G, J) = r. When both G and J are connected, G and J can in addition be made convex subgraphs of H.
Resumo:
There are several centrality measures that have been introduced and studied for real world networks. They account for the different vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is a measure of the influence of a vertex over the flow of information between every pair of vertices under the assumption that information primarily flows over the shortest path between them. In this paper we present betweenness centrality of some important classes of graphs.
Resumo:
We present an explicit description, in terms of central simple algebras, of a cup product map which occurs in the statement of local Tate duality for Galois modules of prime cardinality p. Given cocycles f and g, we construct a central simple algebra of dimension p^2 whose class in the Brauer group gives the cup product f\cup g. This algebra is as small as possible.
Resumo:
We provide necessary and sufficient conditions for states to have an arbitrarily small uncertainty product of the azimuthal angle phi and its canonical moment L(z). We illustrate our results with analytical examples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)