974 resultados para Learning sequence
Resumo:
This paper describes a study that was conducted to learn more about how older adults use the tools in a GUI to undertake tasks in Windows applications. The objective was to gain insight into what people did and what they found most difficult. File and folder manipulation, and some aspects of formatting presented difficulties, and these were thought to be related to a lack of understanding of the task model, the correct interpretation of the visual cues presented by the interface, and the recall and translation of the task model into a suitable sequence of actions.
Resumo:
We analyze a dynamic principal–agent model where an infinitely-lived principal faces a sequence of finitely-lived agents who differ in their ability to produce output. The ability of an agent is initially unknown to both him and the principal. An agent’s effort affects the information on ability that is conveyed by performance. We characterize the equilibrium contracts and show that they display short–term commitment to employment when the impact of effort on output is persistent but delayed. By providing insurance against early termination, commitment encourages agents to exert effort, and thus improves on the principal’s ability to identify their talent. We argue that this helps explain the use of probationary appointments in environments in which there exists uncertainty about individual ability.
Resumo:
Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.
Resumo:
This inquiry reveals the crucial guidance of teachers toward surveying the capacity and needs of students, the formation of ideas, acting upon ideas, fostering connections, seeing potential, making judgments, and arranging conditions. Each aesthetic trace causes me to wonder how teachers learn to create experiences that foster student participation in the world aesthetically. The following considerations surface: • Given the emphasis in schools on outcomes and results, how do we encourage teachers to focus on acts of mind instead of end products in their work with students? • Given the orientations toward technical rationality, to fixed sequence, how do we help teachers experience fluid, purposeful learning adventures with students in which the imagi¬nation is given room to play? • Given the tendency to conceive of planning in teaching as the deciding of everything in advance, how do we help teachers and students become attuned to making good judgments derived from within learning experiences? • How do we help teachers build dialogical multivoiced conversations instead of monolithic curriculum? • What do we do to recover the pleasure dwelling in subject matter? How do we get teachers and students to engage thoughtfully in meaningful learning as opposed to covering curriculum7 • A capacity to attend sensitively, to perceive the complexity of relationships coming together in any teaching/learning experience seems critical. How do we help teachers and students attend to the unity of a learning experience and the play of meanings that arises from such undergoing and doing? The traces, patterns, and texture evidenced locate tremendous hope and wondrous possibilities alive within aesthetic teaching/learning encounters. It is such aliveness I encountered in the grade 4 art classroom that opened this account and continues to compel my attention. Possibilities for teaching, learning, and teacher education emerge. I am convinced they are most worthy of continued pursuit.
Resumo:
Shared attention is a type of communication very important among human beings. It is sometimes reserved for the more complex form of communication being constituted by a sequence of four steps: mutual gaze, gaze following, imperative pointing and declarative pointing. Some approaches have been proposed in Human-Robot Interaction area to solve part of shared attention process, that is, the most of works proposed try to solve the first two steps. Models based on temporal difference, neural networks, probabilistic and reinforcement learning are methods used in several works. In this article, we are presenting a robotic architecture that provides a robot or agent, the capacity of learning mutual gaze, gaze following and declarative pointing using a robotic head interacting with a caregiver. Three learning methods have been incorporated to this architecture and a comparison of their performance has been done to find the most adequate to be used in real experiment. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human in a controlled environment. The experimental results show that the robotic head is able to produce appropriate behavior and to learn from sociable interaction.
Resumo:
Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.
Resumo:
In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.
Resumo:
Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.
Resumo:
Learning by reinforcement is important in shaping animal behavior. But behavioral decision making is likely to involve the integration of many synaptic events in space and time. So in using a single reinforcement signal to modulate synaptic plasticity a twofold problem arises. Different synapses will have contributed differently to the behavioral decision and, even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward but by a population feedback signal as well. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second one involves an action sequence which is itself extended in time and reward is only delivered at the last action, as is the case in any type of board-game. The third is the inspection game that has been studied in neuroeconomics. It only has a mixed Nash equilibrium and exemplifies that the model also copes with stochastic reward delivery and the learning of mixed strategies.
Resumo:
We present a model for plasticity induction in reinforcement learning which is based on a cascade of synaptic memory traces. In the cascade of these so called eligibility traces presynaptic input is first corre lated with postsynaptic events, next with the behavioral decisions and finally with the external reinforcement. A population of leaky integrate and fire neurons endowed with this plasticity scheme is studied by simulation on different tasks. For operant co nditioning with delayed reinforcement, learning succeeds even when the delay is so large that the delivered reward reflects the appropriateness, not of the immediately preceeding response, but of a decision made earlier on in the stimulus - decision sequence . So the proposed model does not rely on the temporal contiguity between decision and pertinent reward and thus provides a viable means of addressing the temporal credit assignment problem. In the same task, learning speeds up with increasing population si ze, showing that the plasticity cascade simultaneously addresses the spatial problem of assigning credit to the different population neurons. Simulations on other task such as sequential decision making serve to highlight the robustness of the proposed sch eme and, further, contrast its performance to that of temporal difference based approaches to reinforcement learning.
Resumo:
With a virus such as Human Immunodeficiency Virus (HIV) that has infected millions of people worldwide, and with many unaware that they are infected, it becomes vital to understand how the virus works and how it functions at the molecular level. Because there currently is no vaccine and no way to eradicate the virus from an infected person, any information about how the virus interacts with its host greatly increases the chances of understanding how HIV works and brings scientists one step closer to being able to combat such a destructive virus. Thousands of HIV viruses have been sequenced and are available in many online databases for public use. Attributes that are linked to each sequence include the viral load within the host and how sick the patient is currently. Being able to predict the stage of infection for someone is a valuable resource, as it could potentially aid in treatment options and proper medication use. Our approach of analyzing region-specific amino acid composition for select genes has been able to predict patient disease state up to an accuracy of 85.4%. Moreover, we output a set of classification rules based on the sequence that may prove useful for diagnosing the expected clinical outcome of the infected patient.
Resumo:
Sustainable natural resource use requires that multiple actors reassess their situation in a systemic perspective. This can be conceptualised as a social learning process between actors from rural communities and the experts from outside organisations. A specifically designed workshop oriented towards a systemic view of natural resource use and the enhancement of mutual learning between local and external actors, provided the background for evaluating the potentials and constraints of intensified social learning processes. Case studies in rural communities in India, Bolivia, Peru and Mali showed that changes in the narratives of the participants of the workshop followed a similar temporal sequence relatively independently from their specific contexts. Social learning processes were found to be more likely to be successful if they 1) opened new space for communicative action, allowing for an intersubjective re-definition of the present situation, 2) contributed to rebalance the relationships between social capital and social, emotional and cognitive competencies within and between local and external actors.
Resumo:
It has been demonstrated that learning a second motor task after having learned a first task may interfere with the long-term consolidation of the first task. However, little is known about immediate changes in the representation of the motor memory in the early acquisition phase within the first minutes of the learning process. Therefore, we investigated such early interference effects with an implicit serial reaction time task in 55 healthy subjects. Each subject performed either a sequence learning task involving two different sequences, or a random control task. The results showed that learning the first sequence led to only a slight, short-lived interference effect in the early acquisition phase of the second sequence. Overall, learning of neither sequence was impaired. Furthermore, the two processes, sequence-unrelated task learning (i.e. general motor training) and the sequence learning itself did not appear to interfere with each other. In conclusion, although the long-term consolidation of a motor memory has been shown to be sensitive to other interfering memories, the present study suggests that the brain is initially able to acquire more than one new motor sequence within a short space of time without significant interference.