624 resultados para Learning Approach
Resumo:
Facial nerve segmentation plays an important role in surgical planning of cochlear implantation. Clinically available CBCT images are used for surgical planning. However, its relatively low resolution renders the identification of the facial nerve difficult. In this work, we present a supervised learning approach to enhance facial nerve image information from CBCT. A supervised learning approach based on multi-output random forest was employed to learn the mapping between CBCT and micro-CT images. Evaluation was performed qualitatively and quantitatively by using the predicted image as input for a previously published dedicated facial nerve segmentation, and cochlear implantation surgical planning software, OtoPlan. Results show the potential of the proposed approach to improve facial nerve image quality as imaged by CBCT and to leverage its segmentation using OtoPlan.
Resumo:
Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.
Resumo:
Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.
Resumo:
BACKGROUND E-learning and blended learning approaches gain more and more popularity in emergency medicine curricula. So far, little data is available on the impact of such approaches on procedural learning and skill acquisition and their comparison with traditional approaches. OBJECTIVE This study investigated the impact of a blended learning approach, including Web-based virtual patients (VPs) and standard pediatric basic life support (PBLS) training, on procedural knowledge, objective performance, and self-assessment. METHODS A total of 57 medical students were randomly assigned to an intervention group (n=30) and a control group (n=27). Both groups received paper handouts in preparation of simulation-based PBLS training. The intervention group additionally completed two Web-based VPs with embedded video clips. Measurements were taken at randomization (t0), after the preparation period (t1), and after hands-on training (t2). Clinical decision-making skills and procedural knowledge were assessed at t0 and t1. PBLS performance was scored regarding adherence to the correct algorithm, conformance to temporal demands, and the quality of procedural steps at t1 and t2. Participants' self-assessments were recorded in all three measurements. RESULTS Procedural knowledge of the intervention group was significantly superior to that of the control group at t1. At t2, the intervention group showed significantly better adherence to the algorithm and temporal demands, and better procedural quality of PBLS in objective measures than did the control group. These aspects differed between the groups even at t1 (after VPs, prior to practical training). Self-assessments differed significantly only at t1 in favor of the intervention group. CONCLUSIONS Training with VPs combined with hands-on training improves PBLS performance as judged by objective measures.
Resumo:
This work presents an educational formal initiative aimed to monitor the acquisition and strengthening of competences by students that are being taught in project management subject. Groups of students belonging to three universities, embracing different knowledge areas such as engineering, biology, etc., were selected to run the experience. All of them had nevertheless a common and basic starting point: inexperience in project management field. In this scenario, we propose a new theoretical and practical approach oriented to reinforce problem-solving and related competences in a project management subject context. For this purpose, a Project-Based Learning (PjBL) initiative has been specifically designed and developed. The main idea is to bring a real world engineering project management case into the classroom, where students must face up to a completely new learning approach –groups in different locations, collaborative mode and unspecific solution, supported by a powerful internet platform:.project.net (http://www.Project.net). Other relevant aspects such as project climate, knowledge increasing, have also been monitored during the course. Results show and overall improvement in key competences. The obtained information will be used in two ways: to feed the students back about personal opportunities for improvement in specific competences, and to fine-tune the experience for further initiatives.
Resumo:
This paper presents a blended learning approach and a study evaluating instruction in a software engineering-related course unit as part of an undergraduate engineering degree program in computing. In the past, the course unit had a lecture-based format. In view of student underachievement and the high course unit dropout rate, a distance-learning system was deployed, where students were allowed to choose between a distance-learning approach driven by a moderate constructivist instructional model or a blended-learning approach. The results of this experience are presented, with the aim of showing the effectiveness of the teaching/learning system deployed compared to the lecture-based system previously in place. The grades earned by students under the new system, following the distance-learning and blended-learning courses, are compared statistically to the grades attained in earlier years in the traditional face-to-face classroom (lecture-based) learning.
Resumo:
A good and early fault detection and isolation system along with efficient alarm management and fine sensor validation systems are very important in today¿s complex process plants, specially in terms of safety enhancement and costs reduction. This paper presents a methodology for fault characterization. This is a self-learning approach developed in two phases. An initial, learning phase, where the simulation of process units, without and with different faults, will let the system (in an automated way) to detect the key variables that characterize the faults. This will be used in a second (on line) phase, where these key variables will be monitored in order to diagnose possible faults. Using this scheme the faults will be diagnosed and isolated in an early stage where the fault still has not turned into a failure.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Experiential learning approaches such as role-play have been found to be valuable methods of bridging the divide between academic knowledge and practical skills, a problem often cited in tourism and hospitality management education. Such approaches have been found to contribute towards deeper learning by enhancing students' interest, motivation, participation, knowledge and skill development. This paper reports on the implementation of an experiential learning approach designed to encourage and facilitate deeper learning approaches, with the contributing aims of providing students with a more interesting learning experience and a broader set of skills for future employment.
Resumo:
What motivates a university lecturer to consider introducing a new e-learning approach to their educational practice? Accounts of e-learning practice can invite discussion and reflection on the approaches taken, reinforcement of a particular model, connection with the experience of others, vicarious learning opportunities and glimpses into tacit knowledge. If these examples provoke thinking, could they have the ‘sticky qualities’, the memorable inspiration and ideas that move us to action, when we observe the practice of others? (Szulanski, 2003) “Case studies have the capacity to inspire but also to provoke and to challenge.” (JISC, 2004) This paper will discuss a process followed for sharing best practices of e-learning. It will explain how good practices were identified and gathered by the EUNIS E-Learning Task Force collaboration, using a database and a weblog (EUNIC, 2008). It will examine the methods used for the developing and compiling of the practices and the communication of these. Actual examples of some of the case studies gathered will be included in an appendix. Suggestions of ways to develop this process further and the tangible benefits identified will be examined to ask if effective practice can also become embedded practice.
Resumo:
Background: We introduced a series of computer-supported workshops in our undergraduate statistics courses, in the hope that it would help students to gain a deeper understanding of statistical concepts. This raised questions about the appropriate design of the Virtual Learning Environment (VLE) in which such an approach had to be implemented. Therefore, we investigated two competing software design models for VLEs. In the first system, all learning features were a function of the classical VLE. The second system was designed from the perspective that learning features should be a function of the course's core content (statistical analyses), which required us to develop a specific-purpose Statistical Learning Environment (SLE) based on Reproducible Computing and newly developed Peer Review (PR) technology. Objectives: The main research question is whether the second VLE design improved learning efficiency as compared to the standard type of VLE design that is commonly used in education. As a secondary objective we provide empirical evidence about the usefulness of PR as a constructivist learning activity which supports non-rote learning. Finally, this paper illustrates that it is possible to introduce a constructivist learning approach in large student populations, based on adequately designed educational technology, without subsuming educational content to technological convenience. Methods: Both VLE systems were tested within a two-year quasi-experiment based on a Reliable Nonequivalent Group Design. This approach allowed us to draw valid conclusions about the treatment effect of the changed VLE design, even though the systems were implemented in successive years. The methodological aspects about the experiment's internal validity are explained extensively. Results: The effect of the design change is shown to have substantially increased the efficiency of constructivist, computer-assisted learning activities for all cohorts of the student population under investigation. The findings demonstrate that a content-based design outperforms the traditional VLE-based design. © 2011 Wessa et al.
Resumo:
An analysis of the value of peer mentoring as an experiential learning approach
Resumo:
This paper reports on an innovative UK-based ‘Supply Chain Learning’ (SCL) initiative to encourage the corporate sector to consider supplier diversity in respect of ethnic minority businesses. This follows academic and policy interest in programmes to empower ethnic minority enterprises to achieve breakout to mainstream markets and business growth. The first phase of the initiative, entitled Supplier Development East Midlands (SDEM) is examined. By adopting an inter-organisational action learning approach, some of the key attributes of the programme are delineated, focusing on the recurrent action-reflection cycle taking place in a learning group comprising SDEM, LPOs (Large Purchasing Organisations) and small EMSs (Ethnic Minority Suppliers).