999 resultados para Lead germanate glasses


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The frequency upconversion properties of Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses under 975 mn excitation are investigated. Intense green and red emission bands centered at 536, 556 and 672 run, corresponding to the H-2(1/2) --> I-4(15/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) -->I-4(15/2) transitions of Er3+, respectively, were simultaneously observed at room temperature. The influences of PbO on upconversion intensity for the green (536 and 556 nm) and red (672 nm) emissions were compared and discussed. The optimized rare earth doping ratio of Er3+ and Yb3+, is 1:5 for these glasses, which results in the stronger upconversion fluorescence intensities. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The structure of glass has been investigated by means of infrared (IR) spectral analysis. The results indicate that the Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses may be a potential materials for developing upconversion fiber optic devices. (C) 2006 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tm3+/Yb3+-codoped gernianate-niobic (GN) and germanium-bismuth (GB) glasses have been synthesized by conventional ruching and quenching method. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4)->H-3(6) and (1)G(4)->H-3(4), respectively, were observed at room temperature. The possible Up-conversion mechanisms are discussed and estimated. GN glass showed a weaker up-conversion emission than GB glass, which is inconsistent with the prediction from the difference of maximum phonon energy between GN and GB glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. For the first time, our results reveal that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb-(PO(3))(2)center dot xAI(PO(3))(3) with 0 <= - x <= 1 were analyzed to determine the effect of the substitution of Pb by Al on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)Al, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for Al decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent Al-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in Al. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AlO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AlO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AlO(n) polyhedra. There is no corner sharing of O between AlO(n) and PbO(n) polyhedra nor between AlO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-Al and Ca-Al metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bright blue upconversion emission by thulium ions in PbGeO3-PbF2-CdF2 glass triply doped with Nd3+-Tm3+-Yb3+ under diode laser excitation around 800 nm is reported. The results revealed that the Nd3+/Tm3+/Yb3+-codoped sample generated ten times more 475 nm blue upconversion fluorescence than the Yb3+-sensitized Tm3+-doped one, under the same excitation power. The upconversion process also showed a strong dependence upon the Yb3+ concentration. The results also indicated that the neodymium ions played a major role in the upconversion process by transfering the 800 nm excitation to thulium ions. The population of the Tm3+ ions (1)G(4) emitting level was accomplished through a multiion interaction involving ground-state absorption of pump photons around 800 nm by the Nd3+(I-4(9/2)-->H-2(9/2), F-4(5/2)) and Tm3+(H-3(6)-->F-3(4)) ions followed by energy-transfer processes involving the Nd3+-Yb3+(F-4(3/2), F-2(7/2)-->I-4(11/2), F-2(5/2)) and Yb3+-Tm3+(F-2(5/2), F-3(4)-->F-2(7/2), (1)G(4)) pairs. (C) 2003 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glasses and glass-ceramics have been obtained in oxyfluoride systems involving lead and cadmium fluorides and one of the well-known glass former oxides SiO2, B2O3 and TeO2. Vitreous domains were established and a wide range of compositions including high heavy metal contents lead to stable glasses. Amorphous structures have been studied by short-range order spectroscopy techniques (Raman scattering and x-ray absorption) and molecular basic structures have been identified. Besides the usual oxides, the role of glass former could also be proposed for cadmium ions. Special attention has been paid for crystallization process. Cubic lead fluoride, cubic lead tellurite, tetragonal tellurium oxide and a solid solution of the type Pb1-xCdxF2 are obtained as crystallization products depending on the composition and temperature of heat treatments. Pb1-xCdxF2 solid solutions are well known superionic materials and obtaining this solid solution as a crystal phase could be very interesting for applications concerning ionic electrical conduction properties. The addition of rare earth ions led to the control of the crystallization process. In the presence of the nucleating ion only the cubic form beta-PbF2 was identified. Rare earth ions are present in the crystal phase and crystal-like spectroscopic properties were observed suggesting interesting applications for these perfectly transparent glass ceramics in photonics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and F-19 nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (T-g) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems. (C) 2004 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glasses in PbGeO3-PbF-CdF2 and GeO2-PbO-PbF2-CdF2 systems were studied and the fluorine losses during synthesis were investigated. Samples were characterized by differential scanning calorimetry (DSC), X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and Raman scattering spectroscopy. The use of stoichiometric germanate glass, PbGeO3, instead of introducing individual oxides (GeO2 + PbO) lead to decreasing fluorine losses, as detected by a fluorine ion selective electrode. The main structural features obtained from vibrational spectroscopy could be described by a metagermanate basic structure permeating fluorine rich regions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480 - 740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the 3P0 - 3HJ (J=4, 5, and 6), and 3P0 - 3FJ (J=2, and 3,4), transitions, respectively, were observed. The population of the praseodymium upper 3P0 emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the 2F7/2, energy-transfer Yb3+(2F 5/2) Pr3+(3H4), and excited-state absorption of Pr3+ ions provoking the 1G4 - 3P0 transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this report we investigate the optical properties and energy-transfer upconversion luminescence of Ho3+- and Tb3+/Yb 3+-codoped PbGeO3-PbF2-CdF2 glass-ceramic under infrared excitation. In Ho3+/Yb 3+-codoped sample, green(545 nm), red(652 nm), and near-infrared(754 nm) upconversion luminescence corresponding to the 4S 2(5F4) → 5I8, 5F5 → 5I8, and 4S2(5F4) → 5I 7, respectively, was readly observed. Blue(490 nm) signals assigned to the 5F2,3 → 5I8 transition was also detected. In the Tb3+/Yb3+ system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the 5D3(5G6) → 7FJ(J=6,5,4) and 5D4→ 7FJ(J=6,5,4,3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicate that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Lead-cadmium fluorogermanate glasses (PbF2-CdF 2-PbGeO3) the addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (Tg) and to an enhancement of the ionic conductivity properties. Based on different spectroscopic techniques (19F NMR, Ge K-edge X-ryas absorption and Raman scattering) an heterogeneous glass structure is proposed at the molecular scale, which can be described by fluoride rich regions permeating the metagermanate chains. The temperature dependence of the 19F NMR lineshapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluoride mobility in these systems. Eu 3+ emission and vibronic spectra are used to follow the crystallization process leading to transparent glass ceramics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Germanium- and tellurium-based glasses have been largely studied due to their recognized potential for photonics. In this paper, we review our recent studies that include the investigation of the Stokes and anti-Stokes photoluminescence (PL) in different glass systems containing metallic and semiconductor nanoparticles (NPs). In the case of the samples with metallic NPs, the enhanced PL was attributed to the increased local field on the rare-earth ions located in the proximity of the NPs and/or the energy transfer from the metallic NPs to the rare-earth ions. For the glasses containing silicon NPs, the PL enhancement was mainly due to the energy transfer from the NPs to the Er3+ ions. The nonlinear (NL) optical properties of PbO-GeO 2 films containing gold NPs were also investigated. The experiments in the pico- and subpicosecond regimes revealed enhanced values of the NL refractive indices and large NL absorption coefficients in comparison with the films without gold NPs. The reported experiments demonstrate that germanate and tellurite glasses, having appropriate rare-earth ions doping and NPs concentration, are strong candidates for PL-based devices, all-optical switches, and optical limiting. © 2013 Cid Bartolomeu de Araujo et al.