976 resultados para Laser-produced plasma
Resumo:
The nonlinear nature of the rf absorption in a helicon-produced plasma was recently evidenced by the observation that the helicon wave damping as well as the level of short-scale electrostatic fluctuations excited in the helicon plasma increases with rf power. Correlation methods using electrostatic probes as well as microwave back-scattering at the upper-hybrid resonance allow identifying the fluctuations as ion-sound and Trivelpiece– Gould waves satisfying the frequency and wavenumber matching conditions for the parametric decay instability of the helicon pump wave. Furthermore, the growth rates and thresholds deduced from their temporal growth are in good agreement with theoretical predictions for the parametric decay instability that takes into account realistic damping rates for the decay waves as well as a non-vanishing parallel wavenumber of the helicon pump. The close relationship between the rf absorption and the excitation of the fluctuations was investigated in more detail by performing time- and space-resolved measurements of the helicon wave field and the electrostatic fluctuations.
Resumo:
Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated by showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.
Resumo:
Large magnetic fields generated during laser-matter interaction at irradiances of ~ 5×1014 W?cm-2 have been measured using a deflectometry technique employing MeV laser-accelerated protons. Azimuthal magnetic fields were identified unambiguously via a characteristic proton deflection pattern and found to have an amplitude of ~ 45 T in the outer coronal region. Comparison with magnetohydrodynamic simulations confirms that in this regime the mathTe×mathne source is the main field generation mechanism, while additional terms are negligible.
Resumo:
Interferometry has been used to investigate the spatio-temporal evolution of electron number density following 248 nm laser ablation of a magnesium target. Fringe shifts were measured as a function of laser power density for a circular spot obtained using a random phase plate. Line averaged electron number densities were obtained at delay times up to ∼100 ns after the laser pulse. Density profiles normal to the target surface were recorded for power densities on target in the range 125–300 MW cm−2.
Resumo:
We present results from a vacuum-ultraviolet (VUV)
Resumo:
A Langmuir probe has been used as a diagnostic of the temporally evolving electron component within a laser ablated Cu plasma expanding into vacuum, for an incident laser power density on target similar to that used for the pulsed laser deposition of thin films. Electron temperature data were obtained from the retarding region of the probe current/voltage (I/V) characteristic, which was also used to calculate an associated electron number density. Additionally, electron number density data were obtained from the saturation electron current region of the probe (I/V) characteristic. Electron number density data, extracted by the two different techniques, were observed to show the same temporal form, with measured absolute values agreeing to within a factor of 2. The Langmuir probe, in the saturation current region, has been shown for the first time to be a convenient diagnostic of the electron component within relatively low temperature laser ablated plasma plumes. (C) 1999 American Institute of Physics. [S0034-6748(99)01503-8].
Resumo:
The potential of a diagnostic technique to provide quantitative three-dimensional (3D) density distributions of species in a low temperature laser-produced plume is shown. An expanded, short pulse, tunable dye laser is used to probe the plume at a set time during the expansion. Simultaneous recording of two-dimensional in-line absorbance maps and orthogonal recording of laser induced fluorescence permits the 3D density mapping by scanning the dye laser frequency. Preliminary data, supported by a simple model, is presented for the case of Ba II ions in a YBCO plume heated by a KrF laser. (C) 1996 American Institute of Physics.