967 resultados para Laser-Induced Breakdown Spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced fluorescence (LIF) spectroscopy has been proposed as new method for determining the degree of humification of organic matter (OM) in whole soils. It can be also used to analyze the OM in whole soils containing large amounts of paramagnetic materials, and which are neither feasible to Electron Paramagnetic Resonance (EPR) nor to C-13 Nuclear Magnetic Resonance (NMR) spectroscopy. In the present study, 3 LIF spectroscopy was used to investigate the OM in a Brazilian Oxisol containing high concentration of Fe+3. Soil samples were collected from two areas under conventional tillage (CT), two areas under no-till management (NT) and from a non-cultivated (NC) area under natural vegetation. The results of LIF spectroscopic analysis of the top layer (0-5 cm) of whole soils showed a less aromatic OM in the non-cultivated than in the cultivated soils. This is consistent with data corresponding to HA samples extracted from the same soils and analyzed by EPR, NMR and conventional fluorescence spectroscopy. The OM of whole soils at 5-10 and 10-20 cm depth was also characterized by LIF spectroscopy.Analysis of samples of NT and NC soils showed a higher OM aromatic content at depth. This is a consequence of the accumulation of plant residues at the soil surface in quantities that are too large for microorganisms to metabolize fully, thus, resulting in less aromatic or less hurnified humic substances. In deeper soil layers, the input of residues was lower and further decomposition of humic substances by microorganisms continued, and the aromaticity and degree of humification increased with soil depth. This data indicates that the gradient of humification of OM in the NT soil was similar to those observed in natural soils. Nevertheless, the degree of humification of the OM in the soils under no-till management varied less than that corresponding to non-cultivated soils. This may be because the former have been managed under these practices for only 5 years, in contrast to the continuous humification process occurring in the natural soils. on the other band, LIF spectroscopic analysis of the CT soils showed less pronounced changes or no change in the degree of humification with depth. This indicates that the ploughing and harrowing involved in CT lead to homogenization of the soil and thereby also of the degree of humification of OM throughout the profile. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the detection of mechanical and disease stresses in citrus plants (Citrus limonia [L.] Osbeck) using laser-induced fluorescence spectroscopy. Due to its economic importance we have chosen to investigate the citrus canker disease, which is caused by the Xanthomonas axonopodis pv. citri bacteria. Mechanical stress was also studied because it plays an important role in the plant's infection by such bacteria. A laser-induced fluorescence spectroscopy system, composed of a spectrometer and a 532 nm 10 mW excitation laser was used to perform fluorescence spectroscopy. The ratio of two chlorophyll fluorescence bands allows us to detect and discriminate between mechanical and disease stresses. This ability to discriminate may have an important application in the field to detect citrus canker infected trees. (c) 2008 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the origin of ferromagnetism induced in thin-film (similar to 20 nm) Fe-V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (similar to 10(3) s) thermal annealing. However, the laser action provides much higher diffusion coefficients (similar to 4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe. 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free amino acids (AAs) in human plasma are derivatized with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) and analyzed by capillary electrophoresis (CE) with laser induced fluorescence (LIF) detection. The labeling procedure is significantly improved over results reported previously. Derivatization can be completed in 40 min, with concentrations as low as 4 x 10(-8) M successfully labeled in favourable cases. Twenty-nine AAs (including 2 internal standards) are identified and can be reproducibly separated in 70 min. Migration time RSD values for 23 of these AAs were calculated and found in the range from 0.5 to 4%. The rapid derivatization procedure and the resolution obtained in the separation are sufficient for a semi-quantitative, emergency diagnosis of several inborn errors of metabolism (IEM). Amino acid profiles for both normal donor plasma samples and plasma samples of patients suffering from phenylketonuria, tyrosinemia, maple syrup urinary disease, hyperornithinemia, and citrullinemia are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of vascular endothelial growth factor (VEGF) has become the standard of care for patients presenting with wet age-related macular degeneration. However, monthly intravitreal injections are required for optimal efficacy. We have previously shown that electroporation enabled ciliary muscle gene transfer results in sustained protein secretion into the vitreous for up to 9 months. Here, we evaluated the long-term efficacy of ciliary muscle gene transfer of three soluble VEGF receptor-1 (sFlt-1) variants in a rat model of laser-induced choroidal neovascularization (CNV). All three sFlt-1 variants significantly diminished vascular leakage and neovascularization as measured by fluorescein angiography (FA) and flatmount choroid at 3 weeks. FA and infracyanine angiography demonstrated that inhibition of CNV was maintained for up to 6 months after gene transfer of the two shortest sFlt-1 variants. Throughout, clinical efficacy was correlated with sustained VEGF neutralization in the ocular media. Interestingly, treatment with sFlt-1 induced a 50% downregulation of VEGF messenger RNA levels in the retinal pigment epithelium and the choroid. We demonstrate for the first time that non-viral gene transfer can achieve a long-term reduction of VEGF levels and efficacy in the treatment of CNV.Gene Therapy advance online publication, 27 June 2013; doi:10.1038/gt.2013.36.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Pathologic choroidal neovascularizations (CNV) are implicated in the wet form of age-related macular degeneration (ARMD). Abnormal vessel growth is also observed in disease when hypoxia and/or inflammation occur. Our goal is to establish a standard protocol of laser-induced CNV in mice that have different levels of pigmentation to identify the most reliable animal model.Methods: CNV was induced by 4 burns around the optic disk, using a green argon laser (100μm diameter spot size; 0,05 sec. duration) in C57/Bl6, DBA/1 and Balb/c to ascertain the efficacy of the method in function of retina pigmentation. Five different intensities were tested and Bruch's membrane disruption was identified by the appearance of a bubble at the site of photocoagulation. Fluorescein angiographies (FA) were undertaken 14 days post lesion and CNV area was quantified by immunohistochemistry on cryosections.Results: CNV retina area was related to spot intensity after laser injury. While 180mW and 200mW do not induce reliable CNV (respectively 27.85±0.35% and 29±1.67% of the retina surface), 260mW is required to induce 51,07±8.52% of CNV in C57/Bl6 mice. For the DBA/1 strain, less pigmented, 200mW was sufficient to induce 49.35±3.9% of CNV, indicating that lower intensity are required to induce CNV. Furthermore, an intensity of 180mW induced greater CNV (35.55±6.01%) than in C57/Bl6 mice. Nevertheless, laser did not induce reproducible 50% CNV in Balb/c albino mice for all intensities tested. Isolectin-B4 and GFAP stainings revealed neovessel formation and photoreceptor (PR) degeneration at the impact site. The presence of glia was observed throughout all the retinal layers and angiograms showed fluorescein leakage in pigmented mice.Conclusions: The establishment of a standard protocol to induce CNV and subsequent PR degeneration is of prime importance for the use of the laser-induced CNV model and will allow to evaluate the therapeutic potency of agents to prevent CNV and retinal degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced forward transfer (LIFT) is a laser direct-write technique that offers the possibility of printing patterns with a high spatial resolution from a wide range of materials in a solid or liquid state, such as conductors, dielectrics, and biomolecules in solution. This versatility has made LIFT a very promising alternative to lithography-based processes for the rapid prototyping of biomolecule microarrays. Here, we study the transfer process through the LIFT of droplets of a solution suitable for microarray preparation. The laser pulse energy and beam size were systematically varied, and the effect on the transferred droplets was evaluated. Controlled transfers in which the deposited droplets displayed optimal features could be obtained by varying these parameters. In addition, the transferred droplet volume displayed a linear dependence on the laser pulse energy. This dependence allowed determining a threshold energy density value, independent of the laser focusing conditions, which acted as necessary conditions for the transfer to occur. The corresponding sufficient condition was given by a different total energy threshold for each laser beam dimension. The threshold energy density was found to be the dimensional parameter that determined the amount of the transferred liquid per laser pulse, and there was no substantial loss of material due to liquid vaporization during the transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of printing two-dimensional micropatterns of biomolecule solutions is of great interest in many fields of research in biomedicine, from cell-growth and development studies to the investigation of the mechanisms of communication between cells. Although laser-induced forward transfer (LIFT) has been extensively used to print micrometric droplets of biological solutions, the fabrication of complex patterns depends on the feasibility of the technique to print micron-sized lines of aqueous solutions. In this study we investigate such a possibility through the analysis of the influence of droplet spacing of a water and glycerol solution on the morphology of the features printed by LIFT. We prove that it is indeed possible to print long and uniform continuous lines by controlling the overlap between adjacent droplets. We show how, depending on droplet spacing, several printed morphologies are generated, and we offer, in addition, a simple explanation of the observed behavior based on the jetting dynamics characteristic of the LIFT of liquids.