866 resultados para Laser-Frequency Modulation
Resumo:
An all-digital on-chip clock skew measurement system via subsampling is presented. The clock nodes are sub-sampled with a near-frequency asynchronous sampling clock to result in beat signals which are themselves skewed in the same proportion but on a larger time scale. The beat signals are then suitably masked to extract only the skews of the rising edges of the clock signals. We propose a histogram of the arithmetic difference of the beat signals which decouples the relationship of clock jitter to the minimum measurable skew, and allows skews arbitrarily close to zero to be measured with a precision limited largely by measurement time, unlike the conventional XOR based histogram approach. We also analytically show that the proposed approach leads to an unbiased estimate of skew. The measured results from a 65 nm delay measurement front-end indicate that for an input skew range of +/- 1 fan-out-of-4 (FO4) delay, +/- 3 sigma resolution of 0.84 ps can be obtained with an integral error of 0.65 ps. We also experimentally demonstrate that a frequency modulation on a sampling clock maintains precision, indicating the robustness of the technique to jitter. We also show how FM modulation helps in restoring precision in case of rationally related clocks.
Resumo:
We address the problem of robust formant tracking in continuous speech in the presence of additive noise. We propose a new approach based on mixture modeling of the formant contours. Our approach consists of two main steps: (i) Computation of a pyknogram based on multiband amplitude-modulation/frequency-modulation (AM/FM) decomposition of the input speech; and (ii) Statistical modeling of the pyknogram using mixture models. We experiment with both Gaussian mixture model (GMM) and Student's-t mixture model (tMM) and show that the latter is robust with respect to handling outliers in the pyknogram data, parameter selection, accuracy, and smoothness of the estimated formant contours. Experimental results on simulated data as well as noisy speech data show that the proposed tMM-based approach is also robust to additive noise. We present performance comparisons with a recently developed adaptive filterbank technique proposed in the literature and the classical Burg's spectral estimator technique, which show that the proposed technique is more robust to noise.
Resumo:
Optically generated spin polarized electrons in bulk n-type Ge samples have been detected by using a radio-frequency modulation technique. Using the Hanle effect in an external magnetic field, the spin lifetime was measured as a function of temperature in the range 90 K to 180 K. The lifetime decreases with increasing temperature from similar to 5 ns at 100 K to similar to 2 ns at 180 K. We show that the temperature dependence is consistent with the Elliott-Yafet spin relaxation mechanism R. J. Elliot, Phys. Rev. 96, 266 (1954)]. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4772500]
Resumo:
We demonstrate the growth of high quality single phase films of VO2(A, B, and M) on SrTiO3 substrate by controlling the vanadium arrival rate (laser frequency) and oxidation of the V atoms. A phase diagram has been developed (oxygen pressure versus laser frequency) for various phases of VO2 and their electronic properties are investigated. VO2(A) phase is insulating VO2(B) phase is semi-metallic, and VO2(M) phase exhibits a metal-insulator transition, corroborated by photoelectron spectroscopic studies. The ability to control the growth of various polymorphs opens up the possibility for novel (hetero) structures promising new device functionalities. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
This paper is a study of Multilevel Sinusoidal Pulse Width Modulation (MSPWM) methods; Phase Disposition (PD), Alternate Phase Opposition Disposition (APOD), Phase Opposition Disposition (POD) on a single phase Cascaded H-Bridge Multilevel inverter. Various factors such as amplitude modulation index (Ma), frequency modulation index (M-f), phase angle between carrier and reference modulating wave (phi) have been considered for simulation. Variation in these factors and their effect on inverter performance is evaluated. Factors such as DC bus utilization, output r.m.s voltage, total harmonic distortion (%THD), dominant harmonic order, switching losses are evaluated based on simulation results.
Resumo:
We propose a two-dimensional (2-D) multicomponent amplitude-modulation, frequency-modulation (AM-FM) model for a spectrogram patch corresponding to voiced speech, and develop a new demodulation algorithm to effectively separate the AM, which is related to the vocal tract response, and the carrier, which is related to the excitation. The demodulation algorithm is based on the Riesz transform and is developed along the lines of Hilbert-transform-based demodulation for 1-D AM-FM signals. We compare the performance of the Riesz transform technique with that of the sinusoidal demodulation technique on real speech data. Experimental results show that the Riesz-transform-based demodulation technique represents spectrogram patches accurately. The spectrograms reconstructed from the demodulated AM and carrier are inverted and the corresponding speech signal is synthesized. The signal-to-noise ratio (SNR) of the reconstructed speech signal, with respect to clean speech, was found to be 2 to 4 dB higher in case of the Riesz transform technique than the sinusoidal demodulation technique.
Resumo:
We report on the resonant frequency modulation of inertial microelectromechanical systems (MEMS) structures due to squeeze film stiffness over a range of working pressures. Squeeze film effects have been studied extensively, but mostly in the context of damping and Q-factor determination of dynamic MEMS structures, typically suspended over a fixed substrate with a very thin air gap. Here, we show with experimental measurements and analytical calculations how the pressure-dependent air springs (squeeze film stiffness) change the resonant frequency of an inertial MEMS structure by as much as five times. For capturing the isolated effect of the squeeze film stiffness, we first determine the static stiffness of our structure with atomic force microscope probing and then study the effect of the air spring by measuring the dynamic response of the structure, thus finding the resonant frequencies while varying the air pressure from 1 to 905 mbar. We also verify our results by analytical and Finite Element Method calculations. Our findings show that the pressure-dependent squeeze film stiffness can affect a rather huge range of frequency modulation (>400%) and, therefore, can be used as a design parameter for exploiting this effect in MEMS devices. 2014-0310]
Resumo:
The objective of this paper is to study the influence of inverter dead-time on steady as well as dynamic operation of an open-loop induction motor drive fed from a voltage source inverter (VSI). Towards this goal, this paper presents a systematic derivation of a dynamic model for an inverter-fed induction motor, incorporating the effect of inverter dead-time, in the synchronously revolving dq reference frame. Simulation results based on this dynamic model bring out the impact of inverter dead-time on both the transient response and steady-state operation of the motor drive. For the purpose of steady-state analysis, the dynamic model of the motor drive is used to derive a steady-state model, which is found to be non-linear. The steady-state model shows that the impact of dead-time can be seen as an additional resistance in the stator circuit, whose value depends on the stator current. Towards precise evaluation of this dead-time equivalent resistance, an analytical expression is proposed for the same in terms of inverter dead-time, switching frequency, modulation index and load impedance. The notion of dead-time equivalent resistance is shown to simplify the solution of the non-linear steady-state model. The analytically evaluated steady-state solutions are validated through numerical simulations and experiments.
Resumo:
Being able to detect a single molecule without the use of labels has been a long standing goal of bioengineers and physicists. This would simplify applications ranging from single molecular binding studies to those involving public health and security, improved drug screening, medical diagnostics, and genome sequencing. One promising technique that has the potential to detect single molecules is the microtoroid optical resonator. The main obstacle to detecting single molecules, however, is decreasing the noise level of the measurements such that a single molecule can be distinguished from background. We have used laser frequency locking in combination with balanced detection and data processing techniques to reduce the noise level of these devices and report the detection of a wide range of nanoscale objects ranging from nanoparticles with radii from 100 to 2.5 nm, to exosomes, ribosomes, and single protein molecules (mouse immunoglobulin G and human interleukin-2). We further extend the exosome results towards creating a non-invasive tumor biopsy assay. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the `reactive' model prediction for the frequency shift of the resonator upon particle binding. In addition, we demonstrate that molecular weight may be estimated from the frequency shift through a simple formula, thus providing a basis for an ``optical mass spectrometer'' in solution. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor-ligand and protein-protein interactions in real time. The thesis summarizes what we have achieved thus far and shows that the goal of detecting a single molecule without the use of labels can now be realized.
Resumo:
通过在线形谐振腔中引入一段缠绕在压电陶瓷上的单模光纤作为正弦相位调制器,使得激射波长的损耗不固定,抑制由于掺铒光纤的均匀展宽效应引起的模式竞争,从而避免了在室温下不稳定的单波长激射,实现了多波长掺铒光纤激光器的稳定输出。为了获得平坦的多波长输出,在谐振腔里使用了一个损耗峰位于1530nm处的长周期光纤光栅,以获得较为平坦的增益谱。通过两个3dB耦合器制成的反射型梳状滤波器的滤波作用,实验中观察到稳定的多波长激射,相邻波长间隔约为0.45nm。中心9个波长的输出功率平坦度为10dB,边模抑制比大于25dB。
Resumo:
A novel scheme is proposed to transform a Gaussian pulse to a millimeter-wave frequency modulation pulse by using an apodized Moire fiber Bragg grating in radio-over-fiber system. The relation between the input and output pulses is analyzed theoretically by Fourier transformation method and the requirements for the proposed fiber grating are presented. An apodized Moire fiber Bragg grating is designed and its characteristics are studied. It is shown that the proposed device is feasible, and the new scheme is believed to be an effective solution for the generation of millimeter-wave sub-carrier in future radio-over-fiber systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A variety of neural signals have been measured as correlates to consciousness. In particular, late current sinks in layer 1, distributed activity across the cortex, and feedback processing have all been implicated. What are the physiological underpinnings of these signals? What computational role do they play in the brain? Why do they correlate to consciousness? This thesis begins to answer these questions by focusing on the pyramidal neuron. As the primary communicator of long-range feedforward and feedback signals in the cortex, the pyramidal neuron is set up to play an important role in establishing distributed representations. Additionally, the dendritic extent, reaching layer 1, is well situated to receive feedback inputs and contribute to current sinks in the upper layers. An investigation of pyramidal neuron physiology is therefore necessary to understand how the brain creates, and potentially uses, the neural correlates of consciousness. An important part of this thesis will be in establishing the computational role that dendritic physiology plays. In order to do this, a combined experimental and modeling approach is used.
This thesis beings with single-cell experiments in layer 5 and layer 2/3 pyramidal neurons. In both cases, dendritic nonlinearities are characterized and found to be integral regulators of neural output. Particular attention is paid to calcium spikes and NMDA spikes, which both exist in the apical dendrites, considerable distances from the spike initiation zone. These experiments are then used to create detailed multicompartmental models. These models are used to test hypothesis regarding spatial distribution of membrane channels, to quantify the effects of certain experimental manipulations, and to establish the computational properties of the single cell. We find that the pyramidal neuron physiology can carry out a coincidence detection mechanism. Further abstraction of these models reveals potential mechanisms for spike time control, frequency modulation, and tuning. Finally, a set of experiments are carried out to establish the effect of long-range feedback inputs onto the pyramidal neuron. A final discussion then explores a potential way in which the physiology of pyramidal neurons can establish distributed representations, and contribute to consciousness.
Resumo:
在光纤无线电系统(ROF)中,提出了一种利用法布里-珀罗干涉仪来实现将一个光学脉冲转换为毫米波频率调制的光学脉冲的方法。在这种方法中,毫米波调制的频率是由法布里-珀罗干涉仪的腔长来决定的,而脉冲序列振幅衰减和能量转移效率则是由法布里-珀罗干涉仪的腔镜反射率决定的。同时,文中对输出脉冲宽度的扩展所导致的脉冲间的干涉问题也进行了详细阐述。
Resumo:
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.
Resumo:
基于目前国内规模最大的激光驱动器——“神光Ⅱ”八路基频光已经实现功率平衡运行,通过改变其中若干路三倍频系统各调谐量的偏离,对输出三倍频波形进行束与束之间的横向对比研究.研究发现,对于Ⅱ类-Ⅱ类偏振失配三倍频系统,在影响转换效率的三个调谐量中,偏振分配角失配△θp,对三倍频波形影响最大;在入射基频功率密度约为1.0GW/cm^2情况下,当三倍频系统三个调谐量都处在最佳匹配时,三倍频波形半峰全宽τ最小。研究工作为最终实现“神光Ⅱ”八路光束三倍频功率平衡输出提供了晶体调试的方法。