980 resultados para Laser a scansioneTessituraConglomerato bituminosoMesh 3D
Resumo:
The process of making replicas of heritage has traditionally been developed by public agencies, corporations and museums and is not commonly used in schools. Currently there are technologies that allow creating cheap replicas. The new 3D reconstruction software, based on photographs and low cost 3D printers allow to make replicas at a cost much lower than traditional. This article describes the process of creating replicas of the sculpture Goslar Warrior of artist Henry Moore, located in Santa Cruz de Tenerife. To make this process, first, a digital model have been created using Autodesk Recap 360, Autodesk 123D Catch and Autodesk Meshmixer MarkerBot MakerWare applications. Physical replication, has been reproduced in polylactic acid (PLA) by MakerBot Replicator 2 3D printer. In addition, a cost analysis using, in one hand, the printer mentioned, and in the other hand, 3D printing services both online and local, is included. Finally, there has been a specific action with 141 students and 12 high school teachers, who filled a questionnary about the use of sculptural replicas in education.
Resumo:
The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship’s propeller. The flow characteristics of a ship’s propeller jet are of particular interest for the researchers investigating the jet induced seabed damage as documented in the previous studies. Laser Doppler Anemometry (LDA) measurements show that the axial component of velocity is the main contributor to the velocity magnitude at the initial plane of a ship’s propeller jet. The tangential component contributes to the rotation while the radial component which contributes to the diffusion, are the second and third largest contributors to the velocity magnitude. The maximum tangential and radial velocity components at the initial plane are approximately 82% and 14% of the maximum axial velocity component, respectively. The axial velocity distribution at the initial plane shows two peaked ridges with a low velocity core at the rotation axis. The turbulence intensity distribution shows a three-peaked profile at the initial plane.
Resumo:
Filamentary ionization tracks have been observed via optical probing inside Al-coated glass targets after the interaction of a picosecond 20-TW laser pulse at intensities above 10(19) W/cm(2). The tracks, up to 700 mu m in length and between 10 and 20 mu m in width, originate from the focal spot region of the laser beam. Simulations performed with 3D particle-in-cell and 2D Fokker-Planck hybrid codes indicate that the observations are consistent with ionization induced in the glass target by magnetized, collimated beams of high-energy electrons produced during the laser interaction.
Resumo:
Saturation of a low pump energy x-ray laser utilizing a transient inversion mechanism on the 3p-3s transition at 32.63 nm in Ne-like Ti has been demonstrated. A close to saturation amplification was simultaneously achieved for the 3d-3p, J=1-->1 transition at 30.15 nm. Small signal effective transient gain coefficients of g similar to 46 and similar to 35 cm(-1) and gain-length products of 16.7 and 16.9 for these lines were obtained. Experiments demonstrate that it is possible to achieve saturated laser action in a transient regime with Ne-like Ti for a pump energy as low as similar to 5 J.
Resumo:
The potential of a diagnostic technique to provide quantitative three-dimensional (3D) density distributions of species in a low temperature laser-produced plume is shown. An expanded, short pulse, tunable dye laser is used to probe the plume at a set time during the expansion. Simultaneous recording of two-dimensional in-line absorbance maps and orthogonal recording of laser induced fluorescence permits the 3D density mapping by scanning the dye laser frequency. Preliminary data, supported by a simple model, is presented for the case of Ba II ions in a YBCO plume heated by a KrF laser. (C) 1996 American Institute of Physics.
Resumo:
Recently using KrF high power laser (248 nm; 350 fs; 5.0x10(16) W/cm(2)) in the Rutherford Appleton Laboratory an experimental search for recombination extreme ultraviolet (XUV) laser action in Li-like nitrogen ions was performed. To understand the experimental results of line emission at 24.7 nm in the 3d(5/2)-2p(3/2) transition of the Li-like nitrogen ion a simulation was undertaken using a one-dimensional Lagrangian hydrodynamic code. From the simulation results, we confirmed that there was nonlinear dependence of spectral line emission on the gas density which was well matched to the experimental results. Only a six times increase of the 24.7 nm emission intensity was obtained when the plasma length was increased 1000 times from 1 mu m as an optically thin case to 1 mm. Also, the spatial profile of the electron density and temperature was obtained and the electron temperature was about 40-50 eV which was too high for the optical field ionization x-ray lasing. We could not find evidence of x-ray laser gain. (C) 1996 American Institute of Physics.
Resumo:
Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5 mu m in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field.
Resumo:
Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.
Resumo:
In the present study an experimental investigation of the time-averaged velocity and turbulence intensity distributions from a ship’s propeller, in “bollard pull” condition (zero speed of advance), is reported. Previous studies have focused mainly on the velocity profile of not a rotating ship propeller but a plain jet. The velocity profile of a propeller is investigated experimentally in this study.
The velocity measurements were performed in laboratory by using a Laser Doppler Anemometry (LDA). The measurements demonstrated two-peaked ridges velocity profile with a low velocity core at the centre within the near wake. The two-peaked ridges combined to be one-peaked ridge at 3.68 diameters downstream indicating the end of the zone of flow establishment. The study
provides useful information from a rotating ship’s propeller rather than a simplified plain jet to researchers investigating flow velocity generated from a propeller and probably resulting local scouring.
Resumo:
Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]
Resumo:
Spatially and temporally varying neutral, ion and electron number densities have been mapped out within laser ablated plasma plumes expanding into vacuum. Ablation of a magnesium target was performed using a KrF laser, 30 ns pulse duration and 248 nm wavelength. During the initial stage of plasma expansion (t <EQ 100 ns) interferometry has been used to obtain line averaged electron number densities, for laser power densities on target in the range 1.3 - 3.0 X 108 W/cm2. Later in the plasma expansion (t equals 1 microsecond(s) ) simultaneous absorption and laser induced fluorescence spectroscopy has been used to determine 3D neutral and ion number densities, for a power density equal to 6.7 X 107 W/cm2. Two distinct regions within the plume were identified. One is a fast component (approximately 106 cm-1) consisting of ions and neutrals with maximum number densities observed to be approximately 30 and 4 X 1012 cm-3 respectively, and the second consists of slow moving neutral material at a number density of up to 1015 cm-3. Additionally a Langmuir probe has been used to obtain ion and electron number densities at very late times in the plasma expansion (1 microsecond(s) <EQ t <EQ 15 microsecond(s) ). A copper target was ablated using a Nd:YAG laser, 7.5 ns duration and 532 nm (2 (omega) ) wavelength, with a power density on target equal to 6 X 108 W/cm2. Two regions within the plume with different velocities were observed. Within a fast component (approximately 3 X 106 cms-1) electron and ion number densities of the order 5 X 1012 cm-3 were observed and within the second slower component (approximately 106 cms-1) electron and ion number densities of the order 1 - 2 X 1013 cm-3 were determined.
Resumo:
Studies have been carried out to recognize individuals from a frontal view using their gait patterns. In previous work, gait sequences were captured using either single or stereo RGB camera systems or the Kinect 1.0 camera system. In this research, we used a new frontal view gait recognition method using a laser based Time of Flight (ToF) camera. In addition to the new gait data set, other contributions include enhancement of the silhouette segmentation, gait cycle estimation and gait image representations. We propose four new gait image representations namely Gait Depth Energy Image (GDE), Partial GDE (PGDE), Discrete Cosine Transform GDE (DGDE) and Partial DGDE (PDGDE). The experimental results show that all the proposed gait image representations produce better accuracy than the previous methods. In addition, we have also developed Fusion GDEs (FGDEs) which achieve better overall accuracy and outperform the previous methods.
Resumo:
La structuration laser femtoseconde de verres d’oxydes est aujourd’hui un domaine de recherche en pleine expansion. L’interaction laser-matière est de plus en plus utilisée pour sa facilité de mise en œuvre et les nombreuses applications qui découlent de la fabrication des composants photoniques, déjà utilisés dans l’industrie des hautes technologies. En effet, un faisceau d’impulsions ultracourtes focalisé dans un matériau transparent atteint une intensité suffisante pour modifier la matière en trois dimensions sur des échelles micro et nanométriques. Cependant, l’interaction laser-matière à ces régimes d’intensité n’est pas encore complètement maîtrisée, et les matériaux employés ne sont pas entièrement adaptés aux nouvelles applications photoniques. Par ce travail de thèse, nous nous efforçons donc d’apporter des réponses à ces interrogations. Le mémoire est articulé autour de deux grands volets. Le premier aborde la question de l’interaction de surface de verres avec de telles impulsions lumineuses qui mènent à l’auto-organisation périodique de la matière structurée. L’influence du dopage en ions photosensibles et des paramètres d’irradiation est étudiée afin d’appuyer et de conforter le modèle d’incubation pour la formation de nanoréseaux de surface. À travers une approche innovante, nous avons réussi à apporter un contrôle de ces structures nanométriques périodiques pour de futures applications. Le second volet traite de cristallisation localisée en volume induite en grande partie par l’interaction laser-matière. Plusieurs matrices vitreuses, avec différents dopages en sel d’argent, ont été étudiées pour comprendre les mécanismes de précipitation de nanoparticules d’argent. Ce travail démontre le lien entre la physicochimie de la matrice vitreuse et le caractère hors équilibre thermodynamique de l’interaction qui influence les conditions de nucléation et de croissance de ces nano-objets. Tous ces résultats sont confrontés à des modélisations de la réponse optique du plasmon de surface des nanoparticules métalliques. Les nombreuses perspectives de ce travail ouvrent sur de nouvelles approches quant à la caractérisation, aux applications et à la compréhension de l’interaction laser femtoseconde pour l’inscription directe de briques photoniques dans des matrices vitreuses.
Resumo:
An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.
Resumo:
Die laserinduzierte Plasmaspektroskopie (LIPS) ist eine spektrochemische Elementanalyse zur Bestimmung der atomaren Zusammensetzung einer beliebigen Probe. Für die Analyse ist keine spezielle Probenpräparation nötig und kann unter atmosphärischen Bedingungen an Proben in jedem Aggregatzustand durchgeführt werden. Femtosekunden Laserpulse bieten die Vorteile einer präzisen Ablation mit geringem thermischen Schaden sowie einer hohen Reproduzierbarkeit. Damit ist fs-LIPS ein vielversprechendes Werkzeug für die Mikroanalyse technischer Proben, insbesondere zur Untersuchung ihres Ermüdungsverhaltens. Dabei ist interessant, wie sich die initiierten Mikrorisse innerhalb der materialspezifschen Struktur ausbreiten. In der vorliegenden Arbeit sollte daher ein schnelles und einfach zu handhabendes 3D-Rasterabbildungsverfahren zur Untersuchung der Rissausbreitung in TiAl, einer neuen Legierungsklasse, entwickelt werden. Dazu wurde fs-LIPS (30 fs, 785 nm) mit einem modifizierten Mikroskopaufbau (Objektiv: 50x/NA 0.5) kombiniert, welcher eine präzise, automatisierte Probenpositionierung ermöglicht. Spektrochemische Sensitivität und räumliches Auflösungsvermögen wurden in energieabhängigen Einzel- und Multipulsexperimenten untersucht. 10 Laserpulse pro Position mit einer Pulsenergie von je 100 nJ führten in TiAl zum bestmöglichen Kompromiss aus hohem S/N-Verhältnis von 10:1 und kleinen Lochstrukturen mit inneren Durchmessern von 1.4 µm. Die für das Verfahren entscheidende laterale Auflösung, dem minimalen Lochabstand bei konstantem LIPS-Signal, beträgt mit den obigen Parametern 2 µm und ist die bislang höchste bekannte Auflösung einer auf fs-LIPS basierenden Mikro-/Mapping-Analyse im Fernfeld. Fs-LIPS Scans von Teststrukturen sowie Mikrorissen in TiAl demonstrieren eine spektrochemische Sensitivität von 3 %. Scans in Tiefenrichtung erzielen mit denselben Parametern eine axiale Auflösung von 1 µm. Um die spektrochemische Sensitivität von fs-LIPS zu erhöhen und ein besseres Verständnis für die physikalischen Prozesse während der Laserablation zu erhalten, wurde in Pump-Probe-Experimenten untersucht, in wieweit fs-Doppelpulse den laserinduzierten Abtrag sowie die Plasmaemission beeinflussen. Dazu wurden in einem Mach-Zehnder-Interferometer Pulsabstände von 100 fs bis 2 ns realisiert, Gesamtenergie und Intensitätsverhältnis beider Pulse variiert sowie der Einfluss der Materialparameter untersucht. Sowohl das LIPS-Signal als auch die Lochstrukturen zeigen eine Abhängigkeit von der Verzögerungszeit. Diese wurden in vier verschiedene Regimes eingeteilt und den physikalischen Prozessen während der Laserablation zugeordnet: Die Thermalisierung des Elektronensystems für Pulsabstände unter 1 ps, Schmelzprozesse zwischen 1 und 10 ps, der Beginn des Abtrags nach mehreren 10 ps und die Expansion der Plasmawolke nach über 100 ps. Dabei wird das LIPS-Signal effizient verstärkt und bei 800 ps maximal. Die Lochdurchmesser ändern sich als Funktion des Pulsabstands wenig im Vergleich zur Tiefe. Die gesamte Abtragsrate variiert um maximal 50 %, während sich das LIPS-Signal vervielfacht: Für Ti und TiAl typischerweise um das Dreifache, für Al um das 10-fache. Die gemessenen Transienten zeigen eine hohe Reproduzierbarkeit, jedoch kaum eine Energie- bzw. materialspezifische Abhängigkeit. Mit diesen Ergebnissen wurde eine gezielte Optimierung der DP-LIPS-Parameter an Al durchgeführt: Bei einem Pulsabstand von 800 ps und einer Gesamtenergie von 65 nJ (vierfach über der Ablationsschwelle) wurde eine 40-fache Signalerhöhung bei geringerem Rauschen erzielt. Die Lochdurchmesser vergrößerten sich dabei um 44 % auf (650±150) nm, die Lochtiefe um das Doppelte auf (100±15) nm. Damit war es möglich, die spektrochemische Sensitivität von fs-LIPS zu erhöhen und gleichzeitig die hohe räumliche Auflösung aufrecht zu erhalten.