987 resultados para Larger foraminifera
Resumo:
Species distribution patterns in planktonic foraminiferal assemblages are fundamental to the understanding of the determinants of their ecology. Until now, data used to identify such distribution patterns was mainly acquired using the standard >150 µm sieve size. However, given that assemblage shell size-range in planktonic foraminifera is not constant, this data acquisition practice could introduce artefacts in the distributional data. Here, we investigated the link between assemblage shell size-range and diversity in Recent planktonic foraminifera by analysing multiple sieve-size fractions in 12 samples spanning all bioprovinces of the Atlantic Ocean. Using five diversity indices covering various aspects of community structure, we found that counts from the >63 µm fraction in polar oceans and the >125 µm elsewhere sufficiently approximate maximum diversity in all Recent assemblages. Diversity values based on counts from the >150 µm fraction significantly underestimate maximum diversity in the polar and surprisingly also in the tropical provinces. Although the new methodology changes the shape of the diversity/sea-surface temperature (SST) relationship, its strength appears unaffected. Our analysis reveals that increasing diversity in planktonic foraminiferal assemblages is coupled with a progressive addition of larger species that have distinct, offset shell-size distributions. Thus, the previously documented increase in overall assemblage shell size-range towards lower latitudes is linked to an expanding shell-size disparity between species from the same locality. This observation supports the idea that diversity and shell size-range disparity in foraminiferal assemblages are the result of niche separation. Increasing SST leads to enhanced surface water stratification and results in vertical niche separation, which permits ecological specialisation. Specific deviations from the overall diversity and shell-size disparity latitudinal pattern are seen in regions of surface-water instability, indicating that coupled shell-size and diversity measurements could be used to reconstruct water column structures of past oceans.
Resumo:
Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminiferal records of a 3.5 m long gravity core from Ameralik Fjord, southern West Greenland, is used for reconstructing late-Holocene environmental changes in this area. The changes are linked to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core records the last 4400 years and covers the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4 3.2 ka BP) is characterized by high accumulation rates of fine (silty) sediments related to strong meltwater discharge from the Inland Ice. The HTM benthic foraminiferal fauna demonstrates the presence of well-ventilated, saline bottom water originating from inflow of subsurface West Greenland Current water of Atlantic (Irminger Sea) origin. The hydrographic conditions were further characterized by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions with a decreased meltwater discharge and more widespread sea-ice cover in the fjord.
Resumo:
Published stable isotope records in marine carbonate are characterized by a positive d18O excursion associated with a negative d13C shift during the early Maastrichtian. However, the cause and even the precise timing of these excursions remain uncertain. We have generated high-resolution foraminiferal stable isotope and gray-scale records for the latest Campanian to early Maastrichtian (73-68 Ma) at two Ocean Drilling Program sites, 525 (Walvis Ridge) and 690 (Weddell Sea). We demonstrate that the negative d13C excursion is decoupled from the d18O increase with a lag of about 600 ka. Our d13C records (both planktic and benthic) show an amplitude for the negative excursion of 0.7 per mill that falls between about 72.1 and 70.7 Ma. Our planktic d18O records indicate an overall increase of 1.2 per mill from 73 to 68 Ma at Site 690, whereas at Site 525 they record a slightly smaller increase (1 per mill) that peaks around 70.1 Ma with decreasing values thereafter. Our benthic d18O data indicate an increase of 1.5 per mill at Site 525 and 0.7 per mill at Site 690 between about 71.4 and 69.9 Ma. Benthic d18O values show different baseline values at the two sites before and after the excursion, but the larger increase at Site 525 means that the values attained at the peak of the excursion are similar at the two sites. We interpret this observation in terms of water mass changes. The excursion is interpreted to reflect a cooling of bottom waters in response to the strengthening contribution of intermediate- to deep-water production in the high southern latitudes rather than increased ice volume. The associated carbon cycle perturbations that we observe are interpreted to reflect a weakening of surface water stratification and increased productivity, as supported by our gray value data.
Resumo:
Continuous sediment sections spanning the last 2.8 Ma have been studied using stable isotope stratigraphy and sedimentological methods. By using paleomagnetic reversals as a chronostratigraphic tool, climatic and paleoceanographic changes have been placed in a time framework. The results show that the major expansion of the Scandinavian Ice Sheet to the coastal areas occurred in the late Neogene period at about 2.8 Ma. Relatively high-amplitude glacials appeared until about 2 Ma. The period between 2.8 and 1.2 Ma was marked by cold surface water conditions with only weak influx of temperate Atlantic water as compared with late Quaternary interglacials. During this period, climatic variations were smaller in amplitude than in the late Quaternary. The Norwegian Sea was a sink of deep water throughout the studied period but deep water ventilation was reduced and calcite dissolution was high compared with the Holocene. Deep water formed by other processes than today. Between 2 and 1.2 Ma, glaciations in Scandinavia were relatively small. A transition toward larger glacials took place during the period 1.2 to 0.6 Ma, corresponding with warmer interglacials and increasing influx of temperate surface water during interglacials. A strong thermal gradient was present between the Norwegian Sea and the northeastern Atlantic during the Matuyama (2.5-0.7 Ma). This is interpreted as a sign of a more zonal and less meridional climatic system over the region as compared with the present situation. The transition towards more meridionality took place over several hundred thousand yr. Only during the last 0.6 Ma has the oceanographic and climatic system of the Norwegian Sea varied in the manner described from previous studies of the late Quaternary.
Resumo:
Warming and changes in ocean carbonate chemistry alter marine coastal ecosystems at an accelerating pace. The interaction between these stressors has been the subject of recent studies on reef organisms such as corals, bryozoa, molluscs, and crustose coralline algae. Here we investigated the combined effects of elevated sea surface temperatures and pCO2 on two species of photosymbiont-bearing coral reef Foraminifera: Heterostegina depressa (hosting diatoms) and Marginopora vertebralis (hosting dinoflagellates). The effects of single and combined stressors were studied by monitoring survivorship, growth, and physiological parameters, such as respiration, photochemistry (pulse amplitude modulation fluorometry and oxygen production), and chl a content. Specimens were exposed in flow-through aquaria for up to seven weeks to combinations of two pCO2 (~790 and ~490 µatm) and two temperature (28 and 31 °C) regimes. Elevated temperature had negative effects on the physiology of both species. Elevated pCO2 had negative effects on growth and apparent photosynthetic rate in H.depressa but a positive effect on effective quantum yield. With increasing pCO2, chl a content decreased in H. depressa and increased in M. vertebralis. The strongest stress responses were observed when the two stressors acted in combination. An interaction term was statistically significant in half of the measured parameters. Further exploration revealed that 75 % of these cases showed a synergistic (= larger than additive) interaction between the two stressors. These results indicate that negative physiological effects on photosymbiont-bearing coral reef Foraminifera are likely to be stronger under simultaneous acidification and temperature rise than what would be expected from the effect of each of the stressors individually.
Resumo:
We present records of biogenic opal percentage and burial rate in 12 piston cores from the Atlantic and Indian sectors of the Southern Ocean. These records provide a detailed, quantitative description of changing patterns of opal deposition over the last 450 kyr. The striking regional coherence of these records suggests that dissolution in the deep sea and sediment pore waters does not obscure the surface productivity signal, and therefore these opal time series can be used in combination with other surface water tracers to make inferences about the chemistry and circulation of the Southern Ocean under different global climate conditions. Three broad depositional patterns can be distinguished. Northernmost records (39°-42°S latitude) are characterized by enhanced opal burial during glacial periods and strong 41 kyr periodicity. Records from cores just north of the present Antarctic Polar Front (46°-49°S) show even larger increases in opal burial rate during glacial intervals, but have variance concentrated in the 100 and 23 kyr bands. Southernmost records (51°-55°S) are completely out of phase with those to the north, with greatly reduced opal burial rates during glacial periods. Taken as a whole, the opal records show no evidence for the increased total Antarctic productivity predicted by recent geochemical models of atmospheric CO2 variability. The areal expansion of Southern Ocean sea ice over the present zone of high siliceous productivity provides one plausible explanation for the glacial-interglacial opal patterns. The excess silica not taken up in this zone during glacial periods would contribute to greater nutrient availability and thus higher productivity in the subantarctic region. However, local circulation changes may act to modify this basic signal, possibly accounting for the observed differences in the opal variance spectra.
Resumo:
Reconstruction of regional climate and the Okhotsk Sea (OS) environment for the Last Glacial Maximum (LGM), deglaciation and Holocene were performed on the basis of high-resolution records of ice rafted debris (IRD), CaCO3, opal, total organic carbon (TOC), biogenic Ba (Ba_bio) and redox sensitive element (Mn, Mo) content, and diatom and pollen results of four cores that form a north-southern transect. Age models of the studied cores were earlier established by AMS 14C data, oxygen - isotope chronostratigraphy and tephrochronology. According to received results, since 25 ka the regional climate and OS environmental conditions have changed synchronously with LGM condition, cold Heinrich event 1, Bølling -Allerød (BA) warming, Younger Dryas (YD) cooling and Pre-Boreal (PB) warming recorded in the Greenland ice core, North Atlantic sediment, and China cave stalagmites. Calculation of IRD MAR in sediment of north-south transect cores indicate an increase of sea ice formation several times in the glacial OS as compared to the Late Holocene. Accompanying ice formation, increased brine rejection and the larger potential density of surface water at the north shelf due to a drop of glacial East Asia summer monsoon precipitation and Amur River run off, led to strong enhancement of the role of the OS in glacial North Pacific Intermediate Water (NPIW) formation. The remarkable increase in OS productivity during BA and PB warming was probably related with significant reorganisation of the North Pacific deep water ventilation and nutrient input into the NPIW and OS Intermediate Water (OSIW). Seven Holocene OS millennial cold events based on the elevated values of the detrended IRD stack record over the IRD broad trend in the sediments of the studied cores have occurred synchronously with cold events recorded in the North Atlantic, Greenland ice cores and China cave stalagmites after 9 ka. Diatom production in the OS were mostly controlled by sea ice cover changes and surface water stratification induced by sea-ice melting; therefore significant opal accumulation in sediments of this basin begin from 4-6 ka ago simultaneously with a remarkable decrease of sea ice cover.
Resumo:
Sediment samples from the Ontong-Java Plateau in the Pacific and the 90° east ridge in the Indian Ocean were used to investigate whether shell size and early diagenesis affect d11B of the symbiont-bearing planktonic foraminifer Globigerinoides sacculifer. In pristine shells from both study locations we found a systematic increase of d11B and Mg/Ca with shell size. Shells in the sieve size class 515-865 µm revealed d11B values +2.1 to +2.3 per mil higher than shells in the 250-380 µm class. This pattern is most likely due to differences in symbiont photosynthetic activity and its integrated effect on the pH of the foraminiferal microenvironment. We therefore suggest smaller individuals must live at approximately 50-100 m water depth where ambient light levels are lower. Using the empirical calibration curve for d11B in G. sacculifer, only shells larger than 425 µm reflect surface seawater pH. Partial dissolution of shells derived from deeper sediment cores was determined by shell weight analyses and investigation of the shell surface microstructure by scanning electron microscopy. The d11B in partially dissolved shells is up to 2 per mil lower relative to pristine shells of the same size class. In agreement with a relatively higher weight loss in smaller shells, samples from the Ontong-Java Plateau show a more pronounced dissolution effect than larger shells. On the basis of the primary size effect and potential postdepositional dissolution effects, we recommend the use of shells that are visually pristine and, in the case of G. sacculifer, larger than 500 ?m for paleoreconstructions.