992 resultados para Large Mammals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) is one of the most Popular population genetic markers. Its relevance as an indicator Of Population size and history has recently been questioned by several large-scale studies in animals reporting evidence for recurrent adaptive evolution, at least in invertebrates. Here we focus on mammals, a more restricted taxonomic group for which the issue of mtDNA near neutrality is crucial. By analyzing the distribution of mtDNA diversity across species and relating 4 to allozyme diversity, life-history traits, and taxonomy, we show that (i) mtDNA in mammals (toes not reject the nearly neutral model; (ii) mtDNA diversity, however, is unrelated to any of the 14 life-history and ecological variables that we analyzed, including body mass, geographic range, and The World Conservation Union (IUCN) categorization; (iii) mtDNA diversity is highly variable between mammalian orders and families; (iv) this taxonomic effect is most likely explained by variations of mutation rate between lineages. These results are indicative of a strong stochasticity of effective population size in mammalian species. They Suggest that, even in the absence of selection, mtDNA genetic diversity is essentially unpredictable, knowing species biology, and probably uncorrelated to species abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notion that large body size confers some intrinsic advantage to biological species has been debated for centuries. Using a phylogenetic statistical approach that allows the rate of body size evolution to vary across a phylogeny, we find a long-term directional bias toward increasing size in the mammals. This pattern holds separately in 10 of 11 orders for which sufficient data are available and arises from a tendency for accelerated rates of evolution to produce increases, but not decreases, in size. On a branch-by-branch basis, increases in body size have been more than twice as likely as decreases, yielding what amounts to millions and millions of years of rapid and repeated increases in size away from the small ancestral mammal. These results are the first evidence, to our knowledge, from extant species that are compatible with Cope’s rule: the pattern of body size increase through time observed in the mammalian fossil record. We show that this pattern is unlikely to be explained by several nonadaptive mechanisms for increasing size and most likely represents repeated responses to new selective circumstances. By demonstrating that it is possible to uncover ancient evolutionary trends from a combination of a phylogeny and appropriate statistical models, we illustrate how data from extant species can complement paleontological accounts of evolutionary history, opening up new avenues of investigation for both.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life-history and ecology, influences vulnerability to extinction across 474 mammalian species. We found that larger brains, controlling for body size, indirectly increase vulnerability to extinction by extending the gestation period, increasing weaning age, and limiting litter sizes. However, we found no evidence of direct, beneficial or detrimental, effects of brain size on vulnerability to extinction, even when we explicitly considered the different types of threats that lead to vulnerability. Order-specific analyses revealed qualitatively similar patterns for Carnivora and Artiodactyla. Interestingly, for Primates, we found that larger brain size was directly (and indirectly) associated with increased vulnerability to extinction. Our results indicate that under current conditions the constraints on life-history imposed by large brains outweigh the potential benefits, undermining the resilience of the studied mammals. Contrary to the selective forces that have favoured increased brain size throughout evolutionary history, at present, larger brains have become a burden for mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

So Paulo is the most developed state in Brazil and contains few fragments of native ecosystems, generally surrounded by intensive agriculture lands. Despite this, some areas still shelter large native animals. We aimed at understanding how medium and large carnivores use a mosaic landscape of forest/savanna and agroecosystems, and how the species respond to different landscape parameters (percentage of landcover and edge density), in a multi-scale perspective. The response variables were: species richness, carnivore frequency and frequency for the three most recorded species (Puma concolor, Chrysocyon brachyurus and Leopardus pardalis). We compared 11 competing models using Akaike`s information criterion (AIC) and assessed model support using weight of AIC. Concurrent models were combinations of landcover types (native vegetation, ""cerrado"" formations, ""cerrado"" and eucalypt plantation), landscape feature (percentage of landcover and edge density) and spatial scale. Herein, spatial scale refers to the radius around a sampling point defining a circular landscape. The scales analyzed were 250 (fine), 1,000 (medium) and 2,000 m (coarse). The shape of curves for response variables (linear, exponential and power) was also assessed. Our results indicate that species with high mobility, P. concolor and C. brachyurus, were best explained by edge density of the native vegetation at a coarse scale (2,000 m). The relationship between P. concolor and C. brachyurus frequency had a negative power-shaped response to explanatory variables. This general trend was also observed for species richness and carnivore frequency. Species richness and P. concolor frequency were also well explained by a second concurrent model: edge density of cerrado at the fine (250 m) scale. A different response was recorded for L. pardalis, as the frequency was best explained for the amount of cerrado at the fine (250 m) scale. The curve of response was linearly positive. The contrasting results (P. concolor and C. brachyurus vs L. pardalis) may be due to the much higher mobility of the two first species, in comparison with the third. Still, L. pardalis requires habitat with higher quality when compared with other two species. This study highlights the importance of considering multiple spatial scales when evaluating species responses to different habitats. An important and new finding was the prevalence of edge density over the habitat extension to explain overall carnivore distribution, a key information for planning and management of protected areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian scapula is a complex morphological structure, composed of two ossification plates that fuse into a single structure. Most studies on morphological differentiation in the scapula have considered it to be a simple, spatially integrated structure, primarily influenced by the important locomotor function presented by this element. We used recently developed geometric morphometric techniques to test and quantify functional and phylogenetic influences on scapular shape variation in fossil and extant xenarthran mammals. The order Xenarthra is well represented in the fossil record and presents a stable phylogenetic hypothesis for its genealogical history. In addition, its species present a large variety of locomotor habits. Our results show that approximately half of the shape variation in the scapula is due to phylogenetic heritage. This is contrary to the view that the scapula is influenced only by functional demands. There are large-scale shape transformations that provide biomechanical adaptation for the several habits (arboreality, terrestriality, and digging), and small scale-shape transformations (mostly related to the coracoid process) that are not influenced by function. A nonlinear relationship between morphometric and phylogenetic distances indicates the presence of a complex mixture of evolutionary processes acting on shape differentiation of the scapula. J. Morphol. 241,251-263, 1999. (C) 1999 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe the normal bony orbital structure of the large fruit-eating bat (Artibeus lituratus) with emphasis on a unique intraorbital bony structure previously not described in the literature. Procedures: The bony anatomy of the orbital cavity was studied on dissected skulls of large fruit-eating bats. The anatomic description of a unique intraorbital spine was made while studying the bony orbit of macerated skulls. Additional observations were made on dissected formalin-fixed whole heads. Both procedures were performed under a stereo dissecting microscope, using ×2-4-magnification. A histologic analysis of soft tissues surrounding this cylindrical bony structure was performed using cross and longitudinal oblique sections from decalcified whole heads, which had been fixed in formalin. Additionally, biometric measurements and a histomorphometric analysis were performed. Results and conclusions: An intraorbital cylindrical osseous structure measuring 3.96 ± 0.68 mm in length and 155.62 ± 14.03 μm in diameter was observed in the large fruit-eating bat (A. lituratus), creating a unique orbital structural design among mammals. We suggest the name optic spine of the alisphenoid bone. The anatomic, biometric and histologic characterization of this element might contribute to a further understanding of the dynamics of bat vision and the sort of factors that influenced evolution of the visual system of microbats. The authors hope that the documentation of this distinctive anatomic feature will also expand the debate about the phylogenetic analysis of the relationship among bat species in the near future. © 2007 American College of Veterinary Ophthalmologists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most intriguing questions in ecology is how to identify which and how many species will be able to inhabit human-modified landscapes. Large-bodied mammals structure plant communities by trampling, herbivory, seed dispersal and predation, and their local extinction may have pervasive consequences in plant communities due to the breakdown of key interactions. Although much attention has been given to understanding the effects of defaunation on plant communities, information on the potential impacts on plant functional groups (seed dispersal, seed size and seedling leaves defense) inhabiting continuous forests after defaunation is scarce. We conducted mammal surveys (line transects and camera trapping) to determine the defaunation status of a continuous Atlantic forest in Brazil. Then, we evaluated the effects of defaunation on seedling diversity, richness and abundance of functional groups using 15 plot-pairs (each pair with one open and one exclusion plot) monitored over 36. months. We found that the studied area is partially defaunated because it exhibits high abundance of primates, while terrestrial mammals, such as large rodents and ungulates, are rare. We found no significant changes in either seedling richness and diversity or in the seedling composition of plant functional groups in response to mammal exclosure. Seedling mortality and recruitment were similar between plot types. Our findings suggest that at semi-defaunated areas, where arboreal species are still present, terrestrial mammals have low impacts on the plant community reassembly. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An often-cited reason for studying the process of invasion by alien species is that the understanding sought can be used to mitigate the impacts of the invaders. Here, we present an analysis of the correlates of local impacts of established alien bird and mammal species in Europe, using a recently described metric to quantify impact. Large-bodied, habitat generalist bird and mammal species that are widespread in their native range, have the greatest impacts in their alien European ranges, supporting our hypothesis that surrogates for the breadth and the amount of resources a species uses are good indicators of its impact. However, not all surrogates are equally suitable. Impacts are generally greater for mammal species giving birth to larger litters, but in contrast are greater for bird species laying smaller clutches. There is no effect of diet breadth on impacts in birds or mammals. On average, mammals have higher impacts than birds. However, the relationships between impact and several traits show common slopes for birds and mammals, and relationships between impact and body mass and latitude do not differ between birds and mammals. These results may help to anticipate which species would have large impacts if introduced, and so direct efforts to prevent such introductions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small mammals can impede tree regeneration by injuring seedlings and saplings in several ways. One fatal way is by severing their stems, but apparently this type of predation is not well-studied in tropical rain forest. Here, we report on the incidence of 'stem-cutting' to new, wild seedlings of two locally dominant, canopy tree species monitored in 40 paired forest understorey and gap-habitat areas in Korup, Cameroon following a 2007 masting event. In gap areas, which are required for the upward growth and sapling recruitment of both species, 137 seedlings of the long-lived, light-demanding, fast-growing large tropical tree (Microberlinia bisulcata) were highly susceptible to stem-cutting (83% of deaths) - it killed 39% of all seedlings over a c. 2-y period. In stark contrast, seedlings of the more shade-tolerant, slower-growing tree species (Tetraberlinia bifoliolata) were hardly attacked (4.3%). In the understorey, however, stem-cutting was virtually absent. Across the gap areas, the incidence of stem-cutting of M. bisulcata seedlings showed significant spatial variation that could not be explained significantly by either canopy openness or Janzen-Connell type effects (proximity and basal area of conspecific adult trees). To examine physical and chemical traits that might explain the species difference to being cut, bark and wood tissues were collected from a separate sample of seedlings in gaps (i.e. not monitored for stem-cutting). These analyses suggested that, compared with T. bifoliolata, the lower stem density, higher Mg and K and fatty acid concentrations in bark, and fewer phenolic and terpene compounds in M. bisulcata seedlings made them more palatable and attractive to small-mammal predators, likely rodents. We conclude that selective stem-cutting is a potent countervailing force to the current local canopy dominance of the grove-forming M. bisulcata by limiting the recruitment and abundance of its saplings. Given the ubiquity of gaps and ground-dwelling rodents in pantropical forests, it would be surprising if this form of lethal browsing was restricted to Korup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recordings from the PerenniAL Acoustic Observatory in the Antarctic ocean (PALAOA) show seasonal acoustic presence of 4 Antarctic ice-breeding seal species (Ross seal, Ommatophoca rossii, Weddell seal, Leptonychotes weddellii, crabeater, Lobodon carcinophaga, and leopard seal, Hydrurga leptonyx). Apart from Weddell seals, inhabiting the fast-ice in Atka Bay, the other three (pack-ice) species however have to date never (Ross and leopard seal) or only very rarely (crabeater seals) been sighted in the Atka Bay region. The aim of the PASATA project is twofold: the large passive acoustic hydrophone array (hereafter referred to as large array) aims to localize calling pack-ice pinniped species to obtain information on their location and hence the ice habitat they occupy. This large array consists of four autonomous passive acoustic recorders with a hydrophone sensor deployed through a drilled hole in the sea ice. The PASATA recordings are time-stamped and can therefore be coupled to the PALAOA recordings so that the hydrophone array spans the bay almost entirely from east to west. The second, smaller hydrophone array (hereafter referred to as small array), also consists of four autonomous passive acoustic recorders with hydrophone sensors deployed through drilled holes in the sea ice. The smaller array was deployed within a Weddell seal breeding colony, located further south in the bay, just off the ice shelf. Male Weddell seals are thought to defend underwater territories around or near tide cracks and breathing holes used by females. Vocal activity increases strongly during the breeding season and vocalizations are thought to be used underwater by males for the purpose of territorial defense and advertisement. With the smaller hydrophone array we aim to investigate underwater behaviour of vocalizing male and female Weddell seals to provide further information on underwater movement patterns in relation to the location of tide cracks and breathing holes. As a pilot project, one on-ice and three underwater camera systems have been deployed near breathing holes to obtain additional visual information on Weddell seal behavioural activity. Upon each visit in the breeding colony, a census of colony composition on the ice (number of animals, sex, presence of dependent pups, presence and severity of injuries-indicative of competition intensity) as well as GPS readings of breathing holes and positions of hauled out Weddell seals are taken.